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Abstract. We extend the planar Pfaffian formalism for the evaluation of the Ising partition function
to lattices of high topological genusg. The 3D Ising model on a cubic lattice, whereg is proportional
to the number of sites, is discussed in detail. The expansion of the partition function is given in
terms of 22g Pfaffians classified by the oriented homology cycles of the lattice, i.e. by its spin
structures. Correct counting is guaranteed by a signature term which depends on the topological
intersection of the oriented cycles through a simple bilinear formula. The role of a gauge symmetry
arising in the above expansion is discussed.

The same formalism can be applied to the counting problem of perfect matchings over general
lattices and provides a determinant expansion of the permanent of 0–1 matrices.

1. Introduction

The evaluation of the matching polynomial of a general graph with weighted edges is at the
same time a root problem for discrete mathematics, statistical mechanics and mathematical
chemistry. Even in its simplest version, the so-calleddimer-covering problem, in which the
sites of a lattices have to be covered by non-overlapping arrangements of dimers, the evaluation
of the perfect matching polynomial is a fundamental problem for lattice statistics [1–5]. For
planar graphs, e.g. 2D regular lattices, the counting problem is easily reduced via Kasteleyn’s
lattice orientation theorem to the evaluation of a finite number of Pfaffians [1, 6]. Such a
computation requires a number of operations which is polynomial in the number of vertices
and is considered to be a tractable problem. For instance, the exact analytical solution of the
regular 2D Ising model [7] can be easily obtained by expressing the high-temperature loop
counting problem in terms of a dimer-covering generating function over a properly decorated
lattice [1, 4, 6, 8, 9]. The periodic nature of Kasteleyn’s orientation allows for the evaluation
of the associated Pfaffian by diagonalization. Similarly, the Pfaffian method has been used
in mathematical chemistry [10] to derive the asymptotic number of dimer coverings for any
regular surface lattice. Such a number is strictly related to the efficiency of adsorption processes
of dimer molecules over surfaces, or to the degeneracy of double bond arrangements in planar
organic lattices (the so-called Kekulé structures).

In the case of non-homogeneous planar lattices, even though the closed-form analytical
solution is generally impossible to obtain, the Ising and the dimer problems remain tractable
in the algorithmic sense [11].

0305-4470/00/040741+21$30.00 © 2000 IOP Publishing Ltd 741



742 T Regge and R Zecchina

The nature of the matching problem changes completely if one considers non-planar
graphs or lattices [5]. In discrete mathematics, it is known that the counting problem becomes
#P -complete [12] and no exact polynomial algorithm exists for the enumeration of coverings.

In statistical mechanics and mathematical chemistry, the interest in non-planar lattices
hinges on the fact that they are equivalent to higher-dimensional lattices. The 3D cubic lattice
can be considered as a handlebody 2D lattice of topological genusg = 1 +N/4, whereN
is the number of sites. A non-vanishing ratiog/N for N → ∞ is related to an effective
dimensionD > 2 of the lattice, at least as far as its computational complexity is concerned.
No exact solution exists for any non-planar lattice model, the simplest case being two coupled
2D Ising models. Similarly, no exact evaluation of dimer coverings over non-planar lattices
is available. Of course, there exist several powerful probabilistic algorithms and approximate
theories which provide quite accurate information; however, the issue of understanding the
onset of intractability is a basic open one.

In this paper we give an explicit formalism which generalizes Kasteleyn’s method to
arbitrary non-planar graphs. A first step in this direction was obtained in [13] in which the
complete solution for the Ising model on a highly symmetric finite lattice of genusg = 3
andN = 168 vertices was presented. Here we shall extend such formalism to any lattice and
provide a general algorithmic procedure for the 3D cubic lattice. The aim of the paper is to link
the combinatorial Pfaffian representation used for planar lattices with the topological features
of non-planar lattices. As a result, we find an expansion for the 3D partition function in which
the role of spin variables is played by a smaller set of binary topological excitations describing
spin structures of the embedding surface of the lattice.

As early as 1963, Kasteleyn [1, 6] noticed that the matching polynomial and the Ising
partition function could be written as a weighted sum of 22g Pfaffians. In particular, since
that time it has been shown that each Pfaffian can be associated to an element of the group
(Z2)

g × (Z2)
g.

In what follows we show that the Ising partition function can be written asZ =
(2 cosh(βJ ))NZ0(X), whereJ is the spin–spin interaction energy,X = tanh(βJ ) is the
activity of a bond at inverse temperatureβ andZ0(X) is the dimer-covering generating function
given as a series of Pfaffians with a topological signature. The final formula we shall prove is

Z0(X) = 1

2g
∑
{ek=0,1}

(−1)
∑2g

k=2

∑k−1
k′=1 I [ωk,ωk′ ]ekek′Pf

(
8

( 2g∑
k=1

ekωk

)
, X

)
(1)

where the variables{ek = 0, 1} encode the orientation of the 2g elementary homology cycles,
I [ωk, ωk′ ] is the topological intersection matrix of the homology cyclesωk and8 represents
the orientation of the lattice.

The paper is organized as follows. In section 2 we outline some basic results concerning
the combinatorial approaches to the 2D Ising model and briefly review the main steps of the
so-called Pfaffian method. In section 3 we give a thorough description of the topology of the
3D cubic lattice, thereby fixing the notation. Section 4 is devoted to the generalization of
Kasteleyn’s theorem and to the description of the gauge symmetry that such a generalization
introduces in the problem. In section 5 we analyse the set of cycles and cocycles in terms of
which the partition function will be expressed. The construction of a topological intersection
formula which gives the sign of the Pfaffians in the expansion of the partition function is
given in section 6. The final constructive procedure is then presented in section 7. Section 8
contains some preliminary results on the Pfaffian expansion, whereas in section 9 we discuss
the application of the formalism to the dimer covering and the permanent problems.

Throughout the paper a few numerical results will be given in order to provide some (very
preliminary) physical insight. The analysis of the physical consequences of the formalism
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together with the discussion of the technicalities involved will form the subject of a forthcoming
paper [27].

Independently, in [18] some general results that partially overlap with ours are proposed.

2. Review of combinatorial methods

Despite the fact that the original Onsager solution to the 2D Ising model relied on the algebraic
transfer matrix method [7], the combinatorial solutions which have followed provide a more
direct geometrical insight into 2D critical phenomena and field theories.

While the transfer matrix method can be defined in any dimension, the combinatorial
approaches depend strongly on the topology of the space where the lattice is immersed. Very
schematically, in two dimensions the sum over spin configurations is recast as a sum over
closed curves (loops). Such curves are endowed with both an intrinsic topology and with the
extrinsic one ofR2. Since the Ising action depends only on the extrinsic geometry of loops,
one has to avoid double counting and a proper cancellation mechanism, a topological term has
to be introduced in the sum. Such an approach has been developed by Kac and Ward [14] and
probably provides the most natural way of taking the continuum limit toward a field theoretical
analysis [15,16].

In three dimensions, the generalization of the above method encounters enormous
difficulties due to the variety of intrinsic surface topologies immersed in 3D lattices. Despite
the in-depth work performed attempting to recast the critical 3D Ising problem as a string
theory [17], the problem remains unsolved with respect to many aspects.

Here we generalize the 2D (planar) Pfaffian or dimer-covering approach to the Ising model,
a purely combinatorial and basic tool of discrete mathematics that has many applications in
counting problems [5]. In two dimensions, this approach relies on the equivalence between
loop counting and dimer coverings (also referred to asperfect matchings) over a suitably
decorated lattice. Once such a relationship is established the Pfaffian method turns out to be
simple both for the derivation of exact solutions (in the cases of periodic lattices) and for the
definition of polynomial algorithms on 2D heterogeneous models [4,11].

Let us briefly remind ourselves how the method works in the 2D case. The interaction
energy of the Ising model on a planar square lattice32D is given by

H = −J1

N1∑
j=1

N2∑
k=1

σj,kσj,k+1− J2

N1∑
j=1

N2∑
k=1

σj+1,kσj,k (2)

whereN1, N2 are the number of sites in the two orthogonal directions,J1, J2 are the spin–spin
interaction energies andσj,k = ±1. The partition functionZ = ∑{σ=±1} exp(−βH) can be
written as

Z = (cosh(βJ1) cosh(βJ2))
N1N2

∑
{σ=±1}

[ N1∏
j=1

N2∏
k=1

(1 +X1σj,kσj,k+1)

]

×
[ N1∏
j=1

N2∏
k=1

(1 +X2σj,kσj,k+1)

]
(3)

whereXi = tanh(βJi) are called the bond activities. Expanding the product and evaluating the
sum over{σ = ±1}, all the terms containing odd powers ofσ give no contribution, whereas
all even powers may be replaced by 1. It follows that the partition function acquires a clear
interpretation as generating functions of closed loops withp horizontal andq vertical bonds
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with no overlapping sides. In fact, denoting withNpq the number of such loops, we have

Z = (2 cosh(βJ1) cosh(βJ2))
N1N2

∑
p,q

NpqX
p

1X
q

2 . (4)

In turn, the above expansion can be mapped onto the problem of evaluating the generating
function of dimer coverings (the so-called weighted matching polynomial) over a new
‘counting’ lattice3#

2D obtained by substituting each site of the original lattice with a cluster of
six sites (two triangles with a joining bond) and by assigning activity 1 to the new decorating
bonds while retaining the activity of the bonds inherited by the original lattice. The (eight)
possible configurations of loop bonds at any Ising site are in one-to-one correspondence with
perfect dimer configurations on the decorating cluster. Therefore, the sum in (4) coincides
with the generating functions of perfect matchings over the decorated lattice.

Finally, in order to computeZ we orient the lattice according to the Kasteleyn prescription
by assigning arrows to each bond in such a way that for any closed circuit` on3#

2D, the number
of bonds of̀ oriented clockwise is of opposite parity to the number of sites enclosed by`. The
Kasteleyn rules define completely the orientation for planar lattices, whereas for non-planar
lattices, i.e. lattices which can be immersed on surfaces of non-trivial topological genus, we
need further sign fixing for loops not homologically trivial (i.e. without an interior). The
dimer-covering generating function can then be expressed as a weighted sum of Pfaffians of
the antisymmetric adjacency matrix with elements given by the activities of the bonds and signs
determined by their orientation. By virtue of the Cayley theorem, Pfaffians are computed as
square roots of the determinant of such matrices. Thus, the Ising partition function can be
written explicitly as a determinant which for uniform interaction energies can be further block
diagonalized by Fourier transform. The final calculation of a 6× 6 determinant leads to the
exact closed form expression of the 2D Ising partition function. A thorough discussion of the
above procedure can be found in [4].

Below we shall concentrate on the generalization of the above construction to the cubic
3D lattice. The procedure is, however, general and can be straightforwardly generalized to
any non-planar lattice. A first explicit example was presented in [13] for the case of group
lattices with non-trivial topological genus. The same inductive reasoning used in [13] leads to
a simple topological expression for the coefficients in the Pfaffian expansion.

3. The 3D cubic lattice and embedding surface

We consider 3D cubic lattices3 of sidesN1, N2, N3, with N = N1N2N3 sites and
periodic boundary conditions. Each vertexV is identified by a triple of periodic coordinates
{n1, n2, n3}, ni = 0, . . . , Ni − 1, with V (n1, n2, n3) ≡ V (mod(n1, N1), mod(n2, N2),
mod(n3, N3)). The sites can also be labelled in sequential order by the single index
q ≡ q(n1, n2, n3) = mod(n1, N1) + N1mod(n2, N2) + N1N2mod(n3, N3) with the inverse
relations,n1 = mod(q,N1), n2 = mod( q−n1

N1
, N2) andn3 = mod( q−n1−n2N1

N1N2
, N3). In what

follows notations and operations over the integersn1, n2, n3 have to be understood modulo
N1, N2, N3, respectively.

The lattice3 is invariant under translationsDi : ni → ni + 1.
The set ofNb = 3N bondsLi(q), i = 1, 2, 3 of3 connects couples of neighbouring sites

{V (q), V (Diq)}, thus defining the adjacency or incidence matrixA of 3, Aq,q ′ = 1 if q and
q ′ are connected by a bond andAq,q ′ = 0 otherwise.

We callplaquettea square faceFi1(n1, n2, n3) ≡ Fi1(q) of 3 identified by the sequence
of vertices,V (q), V (Di2q), V (Di2Di3q), V (Di3q), where with the notationi1, i2, i3 we denote
a generic cyclic permutation of the indices 1, 2, 3. 3 contains three classes ofN plaquettes
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Figure 1. Orientable surface6 of genusg = N/4 + 1
containing all sites and bonds of the 3D cubic lattice3.
Some examples of the even (E), odd (O) and exceptional
(R) cycles are also shown.

Fi(q), orthogonal to the axesi, (i = 1, 2, 3).
The parity of a site is given byp(q) = (−1)n1+n2+n3. 3 is a bipartite lattice in that edges

always connect vertices of opposite parity.
In order to implement the dimer method we construct an orientable surface6 without

boundary, which contains all the sites and bonds of3 and is the union of a subset of square
plaquettes of3. The numberNf of such plaquettes isNf = Nb/2 = 3N/2, each bond
belonging to two plaquettes of the surface and each plaquette containing four bonds. It follows
thatN and at least one of the numbersN1, N2, N3 need to be even. For simplicity we shall
assumeNi = 2Mi , so thatN = 8M with M = M1M2M3.

As we shall see, all the above conditions can be matched by a definition of6 which
preserves part of the symmetries of the original lattice.

The topological genusg of the surface, evaluated by Euler’s formula, isN −Nb +Nf =
2(1− g), from which it followsg = 1 + 2M = 1 +N/4.

The definition of6 requires that a plaquetteFi1(q) belongs to6 only if ni2 +ni3 is odd, and
we shall call such plaquettesfaces. The final result for6 consists of a square-beam periodic
structure as shown in figure 1.

3.1. Combinatorial topology of the 3D cubic lattice

In order to proceed in the generalization of the Pfaffian method it is useful to recall some basic
notions of combinatorial topology [20].

Sites, bonds and faces of6 generate Abelian groups, additive modulo 2, of non-oriented
chainsCk(6,Z) of dimensionk = 0, 1, 2, respectively. For anyc ∈ Ck(6,Z), we have
c + c = 0, where 0 is the identity of the group.

The linear boundary operatorδ maps chains of different dimensionsδ : Ck(6,Z) →
Ck−1(6,Z) and is defined as follows:

δV (q) = 1

δLi(q) = V (q) + V (Diq)

δFi1(q) = Li2(q) +Li3(Di2q) +Li2(Di3q) +Li3(q).

(5)

Clearly,δ2 = 0. A chainck in the kernel ofδ, i.e. such thatδck = 0, is said to be closed. A
circuit is a closed sequence of vertices connected by edges, where each edge is an element of
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C1(6,Z), the sum of edges of a circuit is a closed 1-chainc1.
A chainck−1 = δck ∈ Ck(6,Z) is called aboundary. Sinceδ2 = 0, a boundaryc1 is

necessarily closed and reduces to a sum of circuits.
We will also keep the definition ofδFi(q) as given by (5) in the improper case in which

Fi(q) is not a face, and henceδFi(q) is not a boundary but only a circuit on6.
Boundaries and closed chains ofCk(6,Z) generate the subgroupsBk(6,Z) ⊂

Zk(6,Z) ⊂ Ck(6,Z), respectively.
The homology group is thus defined byHk(6,Z) = Zk(6,Z)/Bk(6,Z) so that there

exists a projectionπ from closed chains to the elements ofH1, π : Z1(6,Z)→ H1(6,Z).
Boundaries are topologically trivial since they are mapped byπ onto the identity 0 of
the homology groups. The elements ofH1(6,Z) are called cycles and the homology
group is generated by a base of 2g elementary cycles which are equivalence classes of
closed chains under the addition of boundaries. A closed chainck ∈ Zk(6,Z) such that
πck = γk ∈ Hk(6,Z), is called a representative ofγk.

The multiplicative functionals on the elements ofCk(6,Z) andHk(6,Z) with values
±1 constitute groups of cochains and cocycles denoted byCk(6,Z) and Hk(6,Z),
respectively. The definitions ofHk(6,Z) and Hk(6,Z) are independent from the
triangulation of the surface6 and, in particular, will be valid for the decorated lattice0
defined in the following section. The properties of the groupsHk(6,Z) andHk(6,Z)

depend only on the topological features of6 and not on the choice of the tessellating lattice.
The symmetry properties of6 can be seen more clearly by considering its embedding into

the subset or box4 of R3 defined by 06 x < N1, 0 6 y < N2, 0 6 z < N3 with periodic
boundary conditions. The complement4–6 is the union of two open and disjoint subsets
4+, 4− congruent under the translationS = D1D2D3 and invariant underTi = D2

i . S and
{Ti} generate the symmetry group of6 whileDi alone is not a symmetry of6. The closure of
4+, 4− is given by4+ = 4+∪6,4− = 4− ∪6 and4+∩4− = 6. We may conventionally
regard4+ as the interior of6. On4+, the bondLi(q) is convex/concave depending on whether
ni(q) is odd/even, hence, moving along4+ with Di , we encounter alternatively convex and
concave bonds. On4+, each face has two concave and two convex bonds which interchange
if we focus on4− rather than4+.

4. Kasteleyn’s orientation and gauge symmetry

4.1. Decorated counting lattice

In order to write the Ising partition function as a dimer-covering generating function we first
construct a decoration0 of 6 obtained, following Fisher’s prescription [8], by replacing each
site of coordinationq with a graph of 3(q − 2) points andq − 2 triangular faces, as shown
in figure 2 (for the case of interest hereq = 6). In our case, the decorated surface0 contains
12N vertices.

Each face of6 maps into a face of0 composed of four bonds inherited from6 plus
eight bonds introduced by the decoration. Each site of6 originates four triangular faces in
0, see figure 2(b). As we shall see, the above decoration is also equivalent (with respect to
dimer-covering configurations) to a locally non-planar one in which each site of6 yields a
complete graph of six vertices, see figure 2(c).

Clearly, the homology groups of0 and6 coincide and will be identified.
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Figure 2. Oriented decorating clusters. Each site (a) is replaced by either Fisher’s planar decoration
(b) or the equivalent complete graph (c).

4.2. Proper orientations

The orientation over bonds is an additional geometrical structure8 defined by a function
φj (q) = ±1, j = −3,−2,−1, 1, 2, 3, such thatφj (q) = 1 (resp.−1) corresponds to a bond
oriented fromV (q) to V (Djq) (resp. fromV (Djq) to V (q)), andφ−j (q) = −D−1

j φj (q).
An orientation of the bonds of0 or6 is said to beproper if it satisfies the condition of

Kasteleyn’s theorem for planar lattices, i.e. if by moving anticlockwise along the perimeter of a
face we encounter an odd number of oppositely oriented bonds. Unless otherwise specified we
assume in the following that all orientations8 are proper. Consider now a boundary on0 or
6 consisting of a single circuit and containingk points in the interior. By induction it follows
that moving along it anticlockwise we encounter a number of oppositely oriented bonds with
parity opposite to that ofk. A proper orientation of6 defines a proper one for0 as follows.
Bonds of0 inherited from6 are given the sameφj (q). Bonds forming the boundary of an
ornating triangle are then all clockwise oriented so they appear anticlockwise in the adjacent
faces of0 inherited from6 and lead to a proper orientation. Sites of6 and corresponding
decorating clusters of0 fall into two subsets of even and odd sites according to their parity
p(q).

4.3. Gauge group

Given a proper orientation8 of 0, it is possible to derive different but equivalent ones by
reversing all the bonds of0 which are incident to a given siteV (q), according to the local
gaugeoperation (see figure 3)

g(q) : φj (q)→−φj (q) ∀j. (6)

The operations{g(q)} generate thegaugegroupG. The orientations generated byG are
equivalent and will be identified. By usingG we can fix arrows on0 such that they relate even
and odd clusters by a mirror reflection and reversal of orientations of all the bonds.
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g(q)

q q

(A) (B)

Figure 3. Elementarygaugeoperation. The orientation parity of the faces remains unaltered.

4.4. Generalized Kasteleyn rule for dimer coverings

A dimer covering of0 is defined by a two-colouring (say black or white) assignment to the
edges of0 such that each site of0 belongs exactly to one black bond. By superposing two
dimer coverings we obtain a set of closed black circuits which cover all vertices of0. By
moving around a circuit we encounter an alternating sequence of black bonds from each of
the two coverings, therefore the length of the circuit must be even. If the circuit is a boundary
it must enclose points which are themselves connected by bonds forming black circuits, thus
the number of points inside must also be even and by moving around the circuit in whatever
direction we encounter an odd number of opposite arrows.

Dimer configurations are in one-to-one correspondence with terms of the Pfaffian of
an antisymmetric incidence matrixM(8,X) which will be uniquely defined further on by
the pair(0,8). In what follows we shall use one-chains composed of black circuits only,
originating from the superposition of dimer coverings. For simplicity, since no confusion will
arise, we use for the black subgroups and the corresponding dual groups the same notation
B1(6,Z), Z1(6,Z) andH1(6,Z) = Z1(6,Z)/B1(6,Z) introduced in the previous
section for the full groups.

Adding a boundary to a black circuitc does not alter its orientation. The latter depends,
therefore, only on the imageγ = π(c) ∈ H1(6,Z) and defines a functional8(c). From the
bond orientation functionφi(q) we define the orientation function8i1(q) for the boundary of
the facesδFi1(q) as the multiplicative and gauge-invariant functional

8i1(q) = −φi2(q)φi3(Di2q)φ−i2(Di2Di3q)φ−i3(Di3q). (7)

For a black boundary, Kasteleyn’s rule implies

8i(q) = 1 i = 1, . . . ,3 q = 1, . . . , N. (8)

Given an anticlockwise sequence of bondsLkj (qj ) forming the circuitc1 ∈ C1(6,Z)

and connecting the pointsV (qj ), j = 1, . . . , m, the orientation8(c1) overH1(6,Z) is
defined by

8(c1) = −5m
j=1φkj (qj ). (9)

On a lattice of non-trivial genusg (g > 0) such a functional is not an element ofH 1(6,Z),
i.e. in general8(c1 + c2) 6= 8(c1)8(c2), as it can be readily verified in the simple 2D Ising
lattice with periodic boundary conditions but also on other finite lattices [13]. The argument
runs as follows.

The single black circuitc1,2 given by the sumc1 + c2 of two black circuitsc1 andc2 of
parity8(c1) and8(c2) respectively, which intersectp times, has parity

8(c1,2) = (−1)p8(c1)8(c2). (10)
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Figure 4. 3D simple cubic lattice and the axial gauge treeT .

This fact will turn out to be essential in determining the signs with which the Pfaffians have
to appear in the expansion of the generating function. Let us consider the specific example of
the sum of two black circuitsc1 andc2 of parity8(c1) and8(c2) with representativesa + `
for c1, b + ` for c2, wherè is a common bond anda, b are paths closed bỳ. A representative
for the productc12 is nowa + b.

We move alongc1 in a specific direction encounteringna opposite arrows alonga and
r = 0, 1 opposite arrow coming from̀ with a total ofna + r. Similarly, we proceed along
c2 in such a way that when we move alongc1,2, a andb run in the same direction and meet a
numbernb + 1− r of opposite arrows sincèis run in the opposite direction inc2 with respect
to c1. The total number of opposite arrows alongc1,2 is nowna + nb while the total onc1, c2

is na + nb + 1. This result is equivalent to (10) forp = 1 and can be generalized to multiple
intersections.

4.5. Gauge tree, spin structures and Pfaffian matrices

The gauge symmetryG can be used to fix the orientation on a subset of bonds forming a
spanning treeT in 0, see figure 4. It will be seen that both the gauge choice and Kasteleyn’s
rules lead to a number of orientations which is 22g. Such orientations break all symmetries of
6 and are in one-to-one correspondence with the 22g spin structures of a surface of genusg.

For each element of the base ofH1(6,Z) there exist two possible orientations, for a total
of 22g different global orientations of6. Given8 for the cycles of the homology base, it is
possible to derive the parity of any circuit by the intersection formalism related to (10).
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8 defines (modulo gauge transformations) an antisymmetric matrixM(8,X) of
dimension 12N ×12N with elements labelled by the sites of0. Changing the gauge produces
a new matrixM ′(8,X) = KM(8,X)K−1, withK diagonal, which has the same Pfaffian of
M(8).

If q, q ′ are not connected we setMq,q ′(8,X) = 0. If q, q ′ are connected by a decorating
bondLi(q), we haveMq,q ′(8,X) = φi(q) = ±1 depending on the orientation of the bond. If
q, q ′ are connected by a bond inherited from3, we setMq,q ′(8,X) = φi(q)X = ±X, where
X is the so-called activity of the bond,X = tanh(βJ ), whereβ is the inverse temperature and
J the spin interaction energy. The diagonal 12×12 blocks ofM(8,X) describe the decorating
clusters displayed in figure 2(b) and are given by∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 1 −1 0 0 0 0 0
0 0 0 1 0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0 −1 0 0 0
0 −1 0 0 0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0 1 0 0 0
−1 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 −1 0 0 0 1 0 0
0 1 0 −1 0 0 0 0 0 0 1 0
0 0 1 0 −1 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0 0 0 1 −1
0 0 0 0 0 0 0 −1 0 −1 0 1
0 0 0 0 0 0 0 0 −1 1 −1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(11)

We have thus defined all the elements ofM(8,X) which can be written as

M(8,X) = A +XB(8) (12)

whereA is block diagonal consisting ofN/2 fixed blocks as in (11), corresponding to even sites
andN/2 opposite blocks corresponding to odd sites.B(8) containsφi(q). For computational
purposes the matrixM(8,X) can be replaced by an equivalent one of dimensions 12M×12M
by a folding procedure which we can sketch as follows. In this sectionIn denotes the identity
matrix of rankn.

(i) The 12N sites are grouped into two subsets each of 6N sites. The first subset, Ext,
includes the internal sites of each of theN decorating clusters, which in (11) label rows and
columns 6, . . . ,12. Each of these rows and columns have three non-zero entries. The second
subset Int contains sites with two decorating bonds (the two non-zero entries in (11)) and one
inherited from6 which appears inB. Schematically,M(8,X) can be written in blocksMik

of the form

M(8,X) =
∣∣∣∣M11 M12

M21 M22

∣∣∣∣ (13)

wherei, k = 1, 2 label the subsets Ext, Int respectively. But nowM11 is a block diagonal
matrix with Det(M11) = 1 and which can be easily inverted. We then write

det(M) = det(M11) det(M22−M21M
−1
11 M12) = det(Ma). (14)

Ma = M22−M21M
−1
11 M12 is now a 6N × 6N matrix where the decoration now reduces

to complete graphs of order 6 shown in figure 2(c).
(ii) The 6N Ext entries inMa are again partitioned into two subsets labelling even and

odd sites respectively, thus exploiting the fact that6 is a bipartite graph. Schematically,Ma

can be written as

Ma=

∣∣∣∣MEE MEO

MOE MOO

∣∣∣∣ . (15)
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NowMEE,MOO do not containX since an inherited bond always connects sites of opposite
parity, whileMEO,MOE are instead linear inX. We may again apply (14) and obtain a
3N × 3N matrix of the form

Mb(8,X
2) = Ab +X2Bb(8) (16)

such that det(Ma) = det(Mb).
It can be verified that the diagonal matrix� = IN ⊗Diag(1, 1, 1,−1,−1,−1) obeys the

relations

�Ac� = A−1
b �Bc� = B−1

b (17)

and thatAb,Bb share the same spectrum with eigenvalues±i, ±i(2 − √3), ±i(2 +
√

3)
independently of8 and detAb = det� = 1. The essential information is now contained in
Bb andX sinceAb is a fixed numerical matrix.

By Cayley’s theorem the determinant ofM(8,X) orMb(8,X
2) is the square of an even

polynomialPf(8,X) in the activityX called the Pfaffian ofM(8,X).
As we shall see, the ambiguity of sign in the extraction of the square root can be solved

by imposing all Pfaffians to be= 1 in the high-temperature limitX → 0. However, the
polynomialPf(8,X)may have zeros on the real axis in the physical rangeX = 0, 1 and may
change sign when reachingX = 1. By generalizing the results of [13] we find that the sign
in X = 1 is given by the functionσ(a) defined below in (43), having a precise topological
meaning.

(iii) We have:

detMb(8,X
2) = det(Ab +X2Bb) = det(I3N +X2A−1

b Bb) = det(I3N +X2Ub) (18)

whereUb = A−1
b Bb.

Let2 = �Ab, so that22 = I3N and

2Ub2 = 2A−1
b Bb2 = �Bb�Ab = B−1

b Ab = U−1
b (19)

where2 is once again a block 6× 6 matrix which can be explicitly diagonalized so that
by changing basis both2 andU can be written in the following block form where briefly
I = I12M = I3N/2:

2 =
∣∣∣∣ I 0
0 −I

∣∣∣∣ Ub =
∣∣∣∣Q R

S T

∣∣∣∣ . (20)

From (19) we see thatQ,R, S, T satisfy the identities

Q2 − RS = I Q = RTR−1 Q = S−1T S. (21)

We have now

det(I +X2Ub) = det

∣∣∣∣ I +X2Q X2R

X2S I +X2T

∣∣∣∣
= det

(∣∣∣∣ I 0
0 S

∣∣∣∣ ∣∣∣∣ I +X2Q X2RS

X2 I +X2S−1T S

∣∣∣∣ ∣∣∣∣ I 0
0 S−1

∣∣∣∣) (22)

but nowS can be included in the changes of basis and we can assumeS = 1, T = Q,
R = Q2 − I. Therefore, we may simply write

det(I +X2Ub) = det

∣∣∣∣ I +X2Q X2(Q2 − 1)
X2 I +X2Q

∣∣∣∣ = det

∣∣∣∣ 0 −(X4 + 1)I − 2X2Q

I I +X2Q

∣∣∣∣
= det((X4 + 1)I + 2X2Q) = X24M det((X2 +X−2)I + 2Q) (23)

where we subtracted from the upper block row the lower block row multiplied byQ + X−2.
In the last form the determinant is evaluated for a matrix(X4 + 1)I + 2X2Q of rank 12M,
a factor 8 down fromM(8,X), with a considerable gain in computational speed. Clearly,
Pf(8,X)X−12M is invariant under the mapX→ X−1.
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5. Cycles and cocycles overΣ

The black elements ofH1(6,Z) are generated by two classes of elementary cycles
Ei1(q),Oi1(q), referred to as even or odd cycles forming the setsE,O. Such cycles are
homologically equivalent over0 to cycles of the form

Li2 +Li3(Di2q) +Li2(Di3q) +Li3(q) (24)

whereni1, ni2 are even/odd for cycles∈ E/O.
Cycles∈ {E,O} are thus generated by the boundariesδFi(q) of the 12M = 3N/2

plaquettes of0 which are not faces of6 (see figure 1).
However, these cycles are not independent since their number is 6M > 2(1 + 2M) = 2g.

In order to perform a correct counting we consider the following product of six plaquettes for
n1 + 1, n2, n3 even (remember thatq ≡ (n1, n2, n3)):

E1(D1q) +E1(q) + δF2(q) + δF2(D2q) + δF3(q) + δF3(D3q) (25)

i.e. the boundaries of the plaquettes of the elementary cubeC(q) obtained by translating of
the siteV (q) by one unit along the positive direction of all three axes. By expanding the
product (25) each bond appears twice, whence follows the equivalence modulo a boundary of
E1(D1q) andE1(q), which are identified inE. Indeed the parity of the last four plaquettes
indicates that they must be faces of6 and are topologically trivial. Both inF3(n1, n2, n3),
F3(n1, n2, n3 + 1) the sumn1 + n2 is odd, while inF2(n1, n2, n3), F2(n1, n2 + 1, n3) the sum
n1 + n3 is odd. It follows that they have boundaries equivalent to the identity ofH1(6,Z)

and that
Ei(Diq) = Ei(q) ni odd

Oi(Diq) = Oi(q) ni even.
(26)

Each cube of3 gives an identity among cycles, but their actual role depends on the parity
of n1, n2, n3.

If n1, n2, n3 all have the same parity, the boundary of the cube does not contain faces and
leads to the identity

3∑
i=1

(Ei(q) +Ei(Diq)) = 0 (27)

which connects six cycles of the same parity and must be added to the previous identities. We
shall denote withE andO the set of values ofq restricted ton1, n2, n3 all even and all odd,
respectively. Ifq ∈ E , the cubesC(q) andC(Tiq) are continuous and contain the common
cycleEi(Diq) = E1(Tiq). It follows that theM identities deriving from the even cubes are
not independent because in their sum each cycle appears twice. The same reasoning applies
to the odd cubes. Thus we may write∑

q∈E
Ei(q) = 0

∑
q∈O

Oi(q) = 0. (28)

Another class of identities connects even with odd cycles. Consider the plane of3 with
n3 constant. Such a plane is tessellated by plaquettes which are faces ifn1 + n2 is odd and
otherwise have boundaries (on3 but not on6) which are cycles∈ E3(q) orO3(q). By virtue
of the periodicity of3 the plane has toroidal topology and the sum of the boundaries of all the
plaquettes is 0. We thus have the identities

e(n3) =
∑

n1,n2 even

E3(n1, n2, n3) = o(n3) =
∑

n1,n2 odd

O3(n1, n2, n3). (29)

Replacingn3 with n3−1 in the above expressions we obtain the same identity due to (26).
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Such a result can be further extended as follows. Ifn3 is even, we havee(n3) = e(n3−1).
Let us consider the product of the boundaries of the cubesC(n1, n2, n3) wheren3 is a fixed
even index andn1, n2 are even∑

n1,n2 even,i=1,2,3

[Ei(n1, n2, n3) +Ei(Di(n1, n2, n3))]. (30)

Factors of the typeE1(n1, n2, n3), E2(n1, n2, n3) always appear twice in contiguous cubes,
and the products can be written as∑

n1,n2 even

[E3(n1, n2, n3) +E3(n1, n2, n3 + 1)] = e(n3)e(n3 + 1) (31)

from which we havee(n3) = e(n3 + 1). It follows thate(n3) does not depend onn3. The
same result holds for all directions and for cycles of odd arguments. Form (29) we have
e(ni) = o(ni) ≡ Ii , providing three exceptional identitiesIi(i = 1, . . . ,3), which connect
cycles of different parity.

Finally, we have three exceptional cyclesRi(q)(i = 1, . . . ,3) given by

Ri(q) =
∑

n=0,1,...,Ni−1

Li(D
n
i q). (32)

We setRi = Ri(0). EachRi(q) can be expressed in terms ofRi and ofE, O cycles. Note
thatRi(q) does not depend onni and hence can be written in terms of two site labels and a
direction, e.g.R1(q) = R1(n2, n3). Geometrically,R1(q) is a straight circuit which winds
around3 by exploiting the periodicity, its length isN1 = 2M1 and is even (see figure 1).
There is no ambiguity in extending formula (9) to blackRi(q). The existence ofRi(q) follows
from the periodicity conditions imposed on3 and also exists in the 2D Ising model where
they produce the analogue ofRi(q) for i = 1, 2. There is, however, no 2D analogue of theE,
O cycles.

We are now in position to check that the overall number of independent cycles is in fact
2g. To each one of theM even/odd cubes corresponds one identity but onlyM−1 of them are
independent. The 3M even/odd cycles we started with reduce to 3M− (M−1) = 2M +1= g
independent ones, giving an exact overall number of 2g. The three cycles that are eliminated by
the identitiesIi are replaced by the exceptional cyclesRi so that the overall counting remains
unaltered. (In the thermodynamic limitN →∞, we expect a negligible contribution from the
surface termsRi .)

We can restate the counting problem by noticing that the total number of defined cycles
amounts to 3M + 3M + 3= 6M + 3= 3g. However, the total number of identities is given by
2(M − 1) + 3= g and hence the number of independent cycles is once more 4M + 2= 2g as
expected.

The generalized dimer method amounts to writing the partition function as a sum of 22g

G-invariant Pfaffians associated to all possible different orientations8.
We callfundamentalorientation8F that for which8(a) = 1 for alla ∈H1(6,Z). This

can be obtained by setting

φi(n1, n2, n3) = (−1)ni . (33)

While the fundamental orientation makes no distinction among plaquettes, the
antifundamental8A requires8i(q) = −1 for all E, O cycles but8(Ri) = 1. There is
no simple recipe for8A analogous to (33) since the way it appears depends on the spanning
treeT .
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6. Topological intersections and sign functionals

6.1. Intersection of cycles

The bilinear symmetric functionalI [a, b] over the cyclesa, b is given by Mod(p, 2) wherep
is the number of intersections ofa, b over6. In our case a detailed analysis shows that cycles
∈ E,O of the same parity or the same normal do not intersect. The general formula can be
deduced from

I [E1(m1, m2, m3),O2(n1, n2, n3)] = δn1,m1−1δm2,n2−1δn3,m3+1 (34)

by imposing invariance under cyclic permutation of the axes and under theS, Ti symmetry
operations. Two adjacent cycles do not intersect.

The cyclesRi do not obey this rule and the intersections with the exceptional cycles are
given by

I [Rk,Ei(q)] = 0 if i 6= k
I [Rk,Oi(q)] = 0 if i 6= k
I [R1, Ei(n1, n2, n3)] = δi,1(δn2,0δn3,0 + δn2,N2−1δn3,N3−1)

I [R1, Ei(n1, n2, n3)] = δi,2(δn1,0δn3,0 + δn1,N1−1δn3,N3−1)

I [R1, Ei(n1, n2, n3)] = δi,3(δn1,0δn2,0 + δn1,N1−1δn2,N2−1)

(35)

together with the expressions obtained by interchangingE with O.
The definition ofI [a, b] can be extended by linearity mod 2 to arbitrary pairs of cycles

a, b.

6.2. Topological excitation and signature

The intersection formalism leads naturally to the notion of elementary topological excitations
{τi(q)}, a set of minimal operators which locally change a proper orientation into a new
one, still proper but inequivalent.τ only acts on the inherited bonds and we can defineτ

directly over6. Any two inequivalent proper orientations are connected by a sequence ofτ

operations and hence{τi(q)} generate all orientations of6. In particular, we may reach any
orientation by repeatedly applyingτi(q) to80. In the following we use the equivalent notations
8i(n1, n2, n3) ≡ 8i(q) ≡ 8(a), wherea = Ei(q) or Oi(q). The elementary topological
excitations are in one-to-one correspondence with theE,O cycles and we may adopt the same
set of indices and distinguish between even or odd excitations,τi(q)→ τEi (q), τ

O
i (q).

The action ofτE1 (n1, n2, n3) = τE1 (n1− 1, n2, n3) is given by

φ1(n1− 1, n2 + ε, n3 + ξ)→−φ1(n1− 1, n2 + ε, n3 + ξ) ε, ξ = 0, 1. (36)

The definition extends in an obvious way to the other directions and, in virtue of the invariance
under theS, Ti operations, (36) also holds for odd operators. Clearly, the values ofφ on bonds
not appearing in (36) are unaffected byτE1 (q).

Given an elementary cycle, e.g.E1(q), there exist four other intersecting cycles, e.g.

O2(D
−1
1 D2D

−1
3 q) O2(D

−1
1 D2D3q)

O3(D
−1
1 D−1

2 D3q) O3(D
−1
1 D2D3q).

(37)

Consider now the orientation82(n1−1, n2 + 1, n3−1) corresponding toO2(n1−1, n2 +
1, n3− 1) = O2(D

−1
1 D2D

−1
3 q),

82(n1− 1, n2 + 1, n3− 1) = φ1(n1− 1, n2 + 1, n3− 1)φ3(n1, n2 + 1, n3− 1)

×φ−1(n1, n2 + 1, n3)φ−3(n1− 1, n2 + 1, n3). (38)
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The last factor changes sign under the action ofτE1 (q) and hence the orientation of
82(n1 − 1, n2 + 1, n3 − 1) also changes and the same result holds for the other cycles of
example (37).

The action ofτE,Oi (q) changes8 into an inequivalent orientation which differs from8
only in the orientations of the local cycles intersectingEi(q),Oi(q). The orientation of all
faces of6 remain unchanged underτE,Oi (q) so that the Kasteleyn conditions are always
fulfilled. Each cycle can be given an active role if identified withτE,Oi (q) or a passive
one if considered as a cycle changing parity under the action ofτ

E,O
i (q). The functional

Ia ∈ H 1(6,Z) : H1(6,Z)→ Z is defined by

Ia(b) = (−1)I [a,b]a, b ∈ H1(6,Z). (39)

6.3. Axial gauge

We fix the gauge for the orientations of bond by selecting a subset ofN − 1 bonds forming a
spanning treeT of 3, that contains all the sites of3. A convenient gauge fixing is the axial
gauge (as displayed in figure 4):

φ3(0, 0, n3) = 1 n3 = 0, 1, . . . , N3− 2

φ2(0, n2, n3) = (−1)n3 n2 = 0, 1, . . . , N2 − 2 n3 = 0, 1, . . . , N3− 1

φ1(n1, n2, n3) = (−1)n1 n1 = 0, 1, . . . , N1− 2

n2 = 0, 1, . . . , N2 − 1 n3 = 0, 1, . . . , N3.

(40)

The axial gauge leaves undetermined the orientations of 3N−(N−1) = 2N+1= 16M+1
bonds not belonging toT . However, the 12M − 1 Kasteleyn conditions reduce the number of
such independent orientations to 16M + 1− 12M + 1= 4M + 2= 2g, as expected.

From the recursive relation equivalent to (10)

8(a + b) = 8(a)8(b)(−1)I [a,b] (41)

we deduce then the value of8 on all the elements ofH1(6,Z) starting from8i(q). From (10)
we see that8i(q) is invariant underG and the same is therefore true for all8(a). The set of
all the8i(q) determines therefore the global orientation8 (modG) of 6.

7. General procedure and Pfaffian expansion overΣ

The geometrical structure on which we define Pfaffians admits an alternative equivalent
definition. We consider two cubic lattices3E,3O each havingM vertices in one-to-one
correspondence with even/odd cubesC(n1, n2, n3)wheren1+n2+n3 = even/odd, respectively.
The bonds of the lattices correspond to the even/oddE,O cycles.

In place of spins we have the orientation parity of theE, O cycles, satisfying the
identities (26)–(29). Topology plays a marginal role in the classical 2D Ising lattice where the
genusg = 1 leads to a sum over four Pfaffians only.

Here the reduction of the original sum onN = 4(g − 1) spins to one on 2g functionals
does not solve the problem but reduces the complexity of the task. The orientations on the
sublattices3E,3O are not independent.

We now sketch the general algorithm which fixes all gauges and gives all bond orientations
φi(q) in terms of a subset of 2g independentφ′ by means of the Kasteleyn conditions. We
consider anly the homogeneous case where the activities of bonds are the same in all directions,
however, the results can be straightforwardly generalized to any non-homogeneous distribution
of bond interaction energies.

The actual steps are quite complex and can be summarized as follows:
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(1) Compile a list of all 3N φi(q) considered as independent binary variables.
(2) Impose the axial gauge (40) and obtain a sublist of 2N + 1 termsφi(q) only.
(3) Impose the Kasteleyn conditions over faces. This can be achieved by solving iteratively (8)

thus reducing the number of independentφi(q) to 2g = 2 +N/2 forming a basisB for
the 22g functionals inH 1(6,Z). FromB we define by group multiplication the generic
functional8(a) ∈ H 1(6,Z), ∀a ∈ H1(6,Z).

(4) Select a complete basis� = {ωk, k = 1, . . . ,2g} of independent cycles out of
E,O,R1, R2, R3. A generic cycle can then be written as

a =
2g∑
k=1

ekωk ek = 0, 1. (42)

(5) Define the self-intersection functionH1(6,Z)→ Z2, see (34), (35), (41)

σ(a) = (−1)
∑2g

k=2

∑k−1
k′=1 I [ωk,ωk′ ]ekek′ . (43)

(6) The functionIa in (39) defines an invertible duality mapH1(6,Z)→ H 1(6,Z). The
mapσ ◦ I−1

a lifts the self intersection toH 1(6,Z). In any case we do not need to
compute explicitly the inverse ofIa.

(7) Givena as in (42), we computeIa and expand it in terms of the restricted basisB defined in
step 3, thus determining the orientations8(a), φi(q) and all matrix elements ofM(8(a))
explicitly as functions ofe1, . . . , e2g.

(8) The dimer generating functionZ0(X) is then given by the sum over Pfaffians

Z0(X) = 1

2g
∑
a∈H1

σ(a)Pf(8(a), X)

= 1

2g
∑
{ek=0,1}

(−1)
∑2g

k=1

∑k−1
k′=1 I [ωk,ωk′ ]ekek′Pf

(
8

( 2g∑
k=1

ekωk

)
, X

)
. (44)

As in equation (4), the Ising partition function is simply given by

Z = (2 cosh(βJ ))3NZ0(X) (45)

whereJ is the spin–spin interaction energy andX = tanh(βJ ) is the activity of a bond at
inverse temperatureβ.

(9) For non-bipartite lattices such as the decorated spin lattices there is no direct and fast
numerical method to compute Pfaffians with their proper sign. This is possible in other
cases, for example in dimer coverings of bipartite lattices where the matrixM(8(a))

is block diagonal. In spin lattices we first compute the determinant ofM, extract the
positive root and setPf(8, 0) positive. The sign atX = 1 is then directly given byσ(a)
or obtained by analytic continuation of the Pfaffian which is a polynomial of degree 3N

in X. Thusσ(a) could be used to predict the parity of the number of real zeros of the
Pfaffian in the interval 0< X < 1.

8. Preliminary analysis of Pfaffians

This section is very preliminary and deals with a number of properties and conjectures which
will need to be discussed in detail in a separate study [27]. However, we anticipate some
simple results which are essential in analysing the behaviour of the Pfaffian expansion.

Some of these properties have been verified on finite Ising lattices and are in agreement
with extensive numerical sampling and numerical findings [21]. We should mention that the
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procedure has not yet been optimized for a numerical approach. In particular, the classification
of Pfaffian symmetries has still to be implemented.

The self-intersection functionσ(a) can be defined on any triangulated surface of genus
g and particular examples of genusg = 0 to 3 have been worked out in detail in the
literature [4, 13]. The argumenta takes 22g values parametrized by 2g binary variables
e1, . . . , e2g. It is always possible to redefine the basis inH1(6,Z) in such a way as to
haveσ(a) = (−1)

∑g

i=1 eiei+g = ∏g

i=1(−1)eiei+g . The factor(−1)eiei+g takes a value of 1 three
times and a value of−1 once asei, ei+g run on 0, 1 and all the factors appearing inσ(a) are
independent. Suppose now thatN+(g), N−(g) are the number of timesσ(a) takes the values
1,−1 respectively, so thatN+(1) = 3 andN−(1) = 1. We have the recursion relation

N+(g + 1) = 3N+(g) +N−(g) N−(g + 1) = N+(g) + 3N−(g) (46)

which has the solution

N+(g) = 2g−1(2g + 1) N−(g) = 2g−1(2g − 1). (47)

N+(g) andN−(g) give the total number of positive and negativeσ(a) in expansion (44). This
statistics is important in evaluating the convergence properties of the expansion. For highg

this means that if we pair-off positive and negativeσ(a) we are left with a small excess of 2g

positive values, i.e. one part in 2g. SincePf(8, 0) = 1 we haveZ0(0) = 1 as expected at
T = ∞. AsX increases all terms in (44) eventually become positive and equal toPf(8F , 1).
Comparing the total sum 22gPf(8F , 1) with the knownT → 0 limit for Z0 we obtain
Pf(8F , 1) = 214M . The equality of the absolute values ofPf(8, 1) only holds on decorated
spin lattices whereas generic dimer lattices have a spectrum of values. The factorσ(a) induces
a cancellation with a cutoff factor 2−g in (44) in theT →∞ orX→ 0 limit which does not
occur atT → 0 and leads to a steeper log derivative forZ0(X) as compared with that of the
single Pfaffians.

As first noted by Kramers and Wannier [19], planar spin lattices can be characterized by
duality relations. However, forg > 0 duality does not directly relate the partition function
of a lattice to that of the dual, but rather acts very simply on the single terms in expansion
(44) by only changing their signs so that they are still positive in theT → ∞ limit. Since
duality swapsT →∞ andT → 0 limits we see that in dual lattices positivity is required at
opposite ends of the interval 0< X < 1. In the 2D Ising lattice the sign reversal does not alter
the partition function in the thermodynamical limit but the same need not to be true in three
dimensions. In any case the 3D lattice is not self-dual.

A lower boundX0 for the zeros ofPf(8,X) can be derived from (16). From the spectrum
ofAf ,Bf we get‖Af ‖ < 2+

√
3,‖Bf ‖ < 2+

√
3, whenceX0 >

1
2+
√

3
= 2−√3' 0.267. . . .

Numerical analysis indicates that in fact Pfaffians vanish in the rangeXm = 0.3178. . . which
is actually reached byPf(8F ,X) to XM = 0.3506. . . reached byPf(8A,X). These
values can be computed exactly as roots of an algebraic equation because the translational
symmetry of these Pfaffians leads to explicit formulae. Random sampling of orientations8

up toN1 = N2 = N3 = 8 indicate that zeros tend to accumulate around 0.34, see figure 5.
Therefore, we now divide the interval 0< X < 1 into 4 regions:

(i) The very low temperature regionX > XM where all terms in expansion (44) ofZ0 are
positive and the series converges rapidly and agrees with low-T expansions.

(ii) The crossover region centred atX = 0.34, whereN−(g) = 2g−1(2g−1) Pfaffians change
sign.

(iii) The region between the estimated critical temperatureX = X0 ' 0.218 0945(2) [22] and
Xm. In this region the negative terms have absolute values smaller that the positive terms
and we expect that convergence degrades rapidly as we move towardX0.
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Re(X)
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Figure 5. Overlap of the complex zeros of 50 Pfaffians corresponding to different randomly chosen
orientations (N1 = N2 = N3 = 8). XM andXm (computed in theN → ∞ limit) are the upper
ond lower bounds for the zeros given by the singularities of the fundamental and antifundamental
Pfaffians, respectively.X0 corresponds to the value of the critical temperature estimated by different
analytical and numerical methods.

(iv) The high-temperature regionX < X0 where all absolute values of the terms in (44)
become comparable and the value ofZ0 is determined by 2g unpaired Pfaffians. For small
X all absolute values of the Pfaffians are close to 1 and the sum (44) over a sample ofL

random terms has a noise of the order of 2−g√L while we expect a signal of the order of
2−2gL, normalized to 1 atX = 0 for the complete sum. In order to get a signal we need
a signal/noise ratio2−2gL

2−g
√
L
' 1, i.e.L ' 22g. This means that unless one sums over all

terms we only get noise and that numerical computation is ruled out unless one obtains an
explicitly summable formula for the Pfaffians as happens in the limitT →∞. Therefore,
exact matching with knownT → ∞ results is still possible and useful. AsX increases
the absolute values of the positive terms grows, on average, more rapidly than that of
the negative ones thus improving the signal/noise ratio. We conjecture that the critical
X = X0 is effectively a threshold beyond which the signal becomes effective. In general,
for a fixedX and all8 we havePf(8A,X) 6 Pf(8,X) 6 Pf(8F ,X).

Further details and high/low temperature expansion will be discussed in a forthcoming
paper [27].
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9. Dimer statistics

A simple application of the above formalism is the evaluation of the number of perfect
matchings, i.e. dimer coverings, over the 3D cubic lattice3.

As for the Ising model, it can be solved exactly or treated easily in the case of planar
lattices, whereas it still represents an open problem in the case of non-planar graphs [23].

The dimer-covering generating function is given by a Pfaffian expansion similar to (44)
whereM(8) is now aN × N matrix of elementsMq,q ′(8) = φi(q) = ±1 depending on the
orientation of the bond. The decorating bonds are absent whereas the orientations8 of6 play
exactly the same role as in the Ising case. Following the same steps discussed for the Ising
case and separating odd and even sites, we arrive to a block diagonal form ofM(8):

M(8) =
(

0 C(8)

−C(8)T 0

)
. (48)

We now have directlyPf(M(8)) = Det(C(8)), and the expansion reads

ZDimers= 1

2g
∑
a∈H1

σ(a)Pf(8(a)) = 1

2g
∑
{ek=0,1}

(−1)
∑2g

k=2

∑k−1
k′=1 I [ωk,ωk′ ]ekek′Det(C(8))

8 ≡ 8
( 2g∑
k=1

ekωk

)
.

(49)

Such a formula can be used both for exhaustive enumerations of coveringsh(N1, N2, N3)

of finite lattices of linear sizeN1×N2 ×N3 as well as in a probabilistic framework [27].
We have applied (49) to the case of finite cubic lattices with open boundaries in order to

recover and improve the known results. The limitations in the size arise from the number of
terms appearing in the expansion which increase exponentially with the genus of the surface,
which for open boundaries grows asg = M1M2(M3 − 1) +M2M3(M1 − 1) +M3M1(M2 −
1)−M1M2M3 + 1 (g = 2L3− 3L2 + 1 in the isotropic case of linear sizeL). We have found
h(4, 4, 4) = 5051 532 105 (in agreement with [25]),h(6, 4, 4) = 932 814 464 901 633 and
h(6, 6, 4) = 123 115 692 449 982 216 049 513.

Note that the rigorous lower bound [24] on the number of dimer coverings in three
dimensions in theM → ∞ limit can be easily recovered in our approach by computing,
via Fourier transform, the periodic Pfaffian corresponding to8F [27].

Equation (49) can be also thought of as the expansion in terms of determinants of the
permanent of 0–1 matrices, a #P -complete problem which can be easily mapped onto the
evaluation of dimer coverings over an associated bipartite lattice [26].

10. Conclusion

In this paper we propose a combinatorial/topological formalism for the study of the Ising
problem over lattices of arbitrarily high topological genus which generalizes the well known
approach of Kasteleyn. The partition function is written as a sum over Pfaffians with a
topological signature.

We apply the method to the 3D cubic Ising problem where we have reached a very
preliminary assessment on the expansion in the high- and low-temperature ranges. The same
formalism applies to the perfect matchings problem and provides a determinant expansion for
the permanent of 0–1 matrices.

Work is in progress on the physical and algorithmic relevance of the method.
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