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Abstract. We extend the planar Pfaffian formalism for the evaluation of the Ising partition function
tolattices of high topological genys The 3D Ising model on a cubic lattice, wheris proportional
to the number of sites, is discussed in detail. The expansion of the partition function is given in
terms of 2¢ Pfaffians classified by the oriented homology cycles of the lattice, i.e. by its spin
structures. Correct counting is guaranteed by a signature term which depends on the topological
intersection of the oriented cycles through a simple bilinear formula. The role of a gauge symmetry
arising in the above expansion is discussed.

The same formalism can be applied to the counting problem of perfect matchings over general
lattices and provides a determinant expansion of the permanent of 0—1 matrices.

1. Introduction

The evaluation of the matching polynomial of a general graph with weighted edges is at the
same time a root problem for discrete mathematics, statistical mechanics and mathematical
chemistry. Even in its simplest version, the so-cali@der-covering problemin which the
sites of a lattices have to be covered by non-overlapping arrangements of dimers, the evaluation
of the perfect matching polynomial is a fundamental problem for lattice statistics [1-5]. For
planar graphs, e.g. 2D regular lattices, the counting problem is easily reduced via Kasteleyn's
lattice orientation theorem to the evaluation of a finite number of Pfaffians [1, 6]. Such a
computation requires a number of operations which is polynomial in the number of vertices
and is considered to be a tractable problem. For instance, the exact analytical solution of the
regular 2D Ising model [7] can be easily obtained by expressing the high-temperature loop
counting problem in terms of a dimer-covering generating function over a properly decorated
lattice [1, 4, 6, 8,9]. The periodic nature of Kasteleyn’s orientation allows for the evaluation
of the associated Pfaffian by diagonalization. Similarly, the Pfaffian method has been used
in mathematical chemistry [10] to derive the asymptotic number of dimer coverings for any
regular surface lattice. Such anumber is strictly related to the efficiency of adsorption processes
of dimer molecules over surfaces, or to the degeneracy of double bond arrangements in planar
organic lattices (the so-called Kelkustructures).

In the case of nhon-homogeneous planar lattices, even though the closed-form analytical
solution is generally impossible to obtain, the Ising and the dimer problems remain tractable
in the algorithmic sense [11].
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742 T Regge and R Zecchina

The nature of the matching problem changes completely if one considers non-planar
graphs or lattices [5]. In discrete mathematics, it is known that the counting problem becomes
#P-complete [12] and no exact polynomial algorithm exists for the enumeration of coverings.

In statistical mechanics and mathematical chemistry, the interest in non-planar lattices
hinges on the fact that they are equivalent to higher-dimensional lattices. The 3D cubic lattice
can be considered as a handlebody 2D lattice of topological gerssl + N/4, whereN
is the number of sites. A non-vanishing ragigN for N — oo is related to an effective
dimensionD > 2 of the lattice, at least as far as its computational complexity is concerned.
No exact solution exists for any non-planar lattice model, the simplest case being two coupled
2D Ising models. Similarly, no exact evaluation of dimer coverings over non-planar lattices
is available. Of course, there exist several powerful probabilistic algorithms and approximate
theories which provide quite accurate information; however, the issue of understanding the
onset of intractability is a basic open one.

In this paper we give an explicit formalism which generalizes Kasteleyn’s method to
arbitrary non-planar graphs. A first step in this direction was obtained in [13] in which the
complete solution for the Ising model on a highly symmetric finite lattice of genus 3
andN = 168 vertices was presented. Here we shall extend such formalism to any lattice and
provide a general algorithmic procedure for the 3D cubic lattice. The aim of the paper is to link
the combinatorial Pfaffian representation used for planar lattices with the topological features
of non-planar lattices. As a result, we find an expansion for the 3D partition function in which
the role of spin variables is played by a smaller set of binary topological excitations describing
spin structures of the embedding surface of the lattice.

As early as 1963, Kasteleyn [1, 6] noticed that the matching polynomial and the Ising
partition function could be written as a weighted sum &f Pfaffians. In particular, since
that time it has been shown that each Pfaffian can be associated to an element of the group
(Z2)% x (Z2)8.

In what follows we show that the Ising partition function can be writtenZas=
(2 cosiBJ)N Zo(X), where J is the spin—spin interaction energ¥, = tanh(8J) is the
activity of abond atinverse temperatyrandZ,(X) is the dimer-covering generating function
given as a series of Pfaffians with a topological signature. The final formula we shall prove is

2
Zy(X) = 2—](; Z (_1)ng:z YO Howopleer Pf <q> < Z ekwk> , X> (1)
{ex=0,1} k=1
where the variableg, = 0, 1} encode the orientation of the 2lementary homology cycles,

I[wy, wy'] is the topological intersection matrix of the homology cyalgsand ® represents

the orientation of the lattice.

The paper is organized as follows. In section 2 we outline some basic results concerning
the combinatorial approaches to the 2D Ising model and briefly review the main steps of the
so-called Pfaffian method. In section 3 we give a thorough description of the topology of the
3D cubic lattice, thereby fixing the notation. Section 4 is devoted to the generalization of
Kasteleyn's theorem and to the description of the gauge symmetry that such a generalization
introduces in the problem. In section 5 we analyse the set of cycles and cocycles in terms of
which the partition function will be expressed. The construction of a topological intersection
formula which gives the sign of the Pfaffians in the expansion of the partition function is
given in section 6. The final constructive procedure is then presented in section 7. Section 8
contains some preliminary results on the Pfaffian expansion, whereas in section 9 we discuss
the application of the formalism to the dimer covering and the permanent problems.

Throughout the paper a few numerical results will be given in order to provide some (very
preliminary) physical insight. The analysis of the physical consequences of the formalism
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together with the discussion of the technicalities involved will form the subject of a forthcoming
paper [27].
Independently, in [18] some general results that partially overlap with ours are proposed.

2. Review of combinatorial methods

Despite the fact that the original Onsager solution to the 2D Ising model relied on the algebraic
transfer matrix method [7], the combinatorial solutions which have followed provide a more
direct geometrical insight into 2D critical phenomena and field theories.

While the transfer matrix method can be defined in any dimension, the combinatorial
approaches depend strongly on the topology of the space where the lattice is immersed. Very
schematically, in two dimensions the sum over spin configurations is recast as a sum over
closed curves (loops). Such curves are endowed with both an intrinsic topology and with the
extrinsic one ofR?. Since the Ising action depends only on the extrinsic geometry of loops,
one has to avoid double counting and a proper cancellation mechanism, a topological term has
to be introduced in the sum. Such an approach has been developed by Kac and Ward [14] and
probably provides the most natural way of taking the continuum limit toward a field theoretical
analysis [15, 16].

In three dimensions, the generalization of the above method encounters enormous
difficulties due to the variety of intrinsic surface topologies immersed in 3D lattices. Despite
the in-depth work performed attempting to recast the critical 3D Ising problem as a string
theory [17], the problem remains unsolved with respect to many aspects.

Here we generalize the 2D (planar) Pfaffian or dimer-covering approach to the Ising model,
a purely combinatorial and basic tool of discrete mathematics that has many applications in
counting problems [5]. In two dimensions, this approach relies on the equivalence between
loop counting and dimer coverings (also referred tgpagect matchingsover a suitably
decorated lattice. Once such a relationship is established the Pfaffian method turns out to be
simple both for the derivation of exact solutions (in the cases of periodic lattices) and for the
definition of polynomial algorithms on 2D heterogeneous models [4, 11].

Let us briefly remind ourselves how the method works in the 2D case. The interaction
energy of the Ising model on a planar square lattigg is given by

N1 N2 Nl N2
:_JIE Zajkajk+1_JZE E Oj+1k0 k 2
j=1k= j=1 k=

whereN;, N, are the number of sites in the two orthogonal directidhas/, are the spin—spin
interaction energies and , = +1. The partition functiorZ = Z{G:ﬂ] exp(—BH) can be
written as

N1 N»
= (cost(pJy) cost(p )™ 3~ []‘[]‘[(1+Xla, ko,m)}

fo=x1} L j=1k=
N1 Ny
[1_[1_[(1+X20']k0'j k+1)] (3)
j=1lk=

whereX; = tanh(8J;) are called the bond activities. Expanding the product and evaluating the
sum over{c = +1}, all the terms containing odd powers®fgive no contribution, whereas

all even powers may be replaced by 1. It follows that the partition function acquires a clear
interpretation as generating functions of closed loops witiorizontal and; vertical bonds
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with no overlapping sides. In fact, denoting with,, the number of such loops, we have

Z = (2 coshBJ1) cosf(ﬂjz))NlNZZN,,,,Xfxg. (4)
p.q

In turn, the above expansion can be mapped onto the problem of evaluating the generating
function of dimer coverings (the so-called weighted matching polynomial) over a new
‘counting’ lattice A%, obtained by substituting each site of the original lattice with a cluster of
six sites (two triangles with a joining bond) and by assigning activity 1 to the new decorating
bonds while retaining the activity of the bonds inherited by the original lattice. The (eight)
possible configurations of loop bonds at any Ising site are in one-to-one correspondence with
perfect dimer configurations on the decorating cluster. Therefore, the sum in (4) coincides
with the generating functions of perfect matchings over the decorated lattice.

Finally, in order to comput& we orient the lattice according to the Kasteleyn prescription
by assigning arrows to each bond in such a way that for any closed cﬁimmj'th, the number
of bonds oft oriented clockwise is of opposite parity to the number of sites enclosédTye
Kasteleyn rules define completely the orientation for planar lattices, whereas for non-planar
lattices, i.e. lattices which can be immersed on surfaces of non-trivial topological genus, we
need further sign fixing for loops not homologically trivial (i.e. without an interior). The
dimer-covering generating function can then be expressed as a weighted sum of Pfaffians of
the antisymmetric adjacency matrix with elements given by the activities of the bonds and signs
determined by their orientation. By virtue of the Cayley theorem, Pfaffians are computed as
square roots of the determinant of such matrices. Thus, the Ising partition function can be
written explicitly as a determinant which for uniform interaction energies can be further block
diagonalized by Fourier transform. The final calculation of & 6 determinant leads to the
exact closed form expression of the 2D Ising partition function. A thorough discussion of the
above procedure can be found in [4].

Below we shall concentrate on the generalization of the above construction to the cubic
3D lattice. The procedure is, however, general and can be straightforwardly generalized to
any non-planar lattice. A first explicit example was presented in [13] for the case of group
lattices with non-trivial topological genus. The same inductive reasoning used in [13] leads to
a simple topological expression for the coefficients in the Pfaffian expansion.

3. The 3D cubic lattice and embedding surface

We consider 3D cubic latticed of sides Ni, No, N3, with N = N;N,N3 sites and
periodic boundary conditions. Each vertgxs identified by a triple of periodic coordinates
{ni,np,n3}, n; = 0,...,N; — 1, with V(ny,np,n3) = V(modny, N1), modn,, N»),
mOd(l’lg, N3)). The sites can also be labelled in sequential order by the single index
q(ni, np, n3g) = mod(ny, N1) + Nymod(n,, No) + NyNomod(nz, N3) with the inverse

reIatlons n1 = mod(g, N1), nz = mod(‘7=, Np) andng = mod(L”:Nl N3). In what
follows notations and operations over the integersno, nz have to be understood modulo
N1, N2, N3, respectively.

The latticeA is invariant under translation8; : n; — n; + 1.

The set ofN, = 3N bondsL;(g),i = 1, 2, 3 of A connects couples of neighbouring sites
{V(g), V(D;q)}, thus defining the adjacency or incidence ma#tinf A, A, ., = 1if g and
¢’ are connected by a bond ang ,, = 0 otherwise.

We callplaquettea square facé;, (n1, no, n3) = F;,(q) of A identified by the sequence
of vertices,V (¢), V(D;,q), V(D;,D;i,q), V(D,,q), where with the notation, i, i3 we denote
a generic cyclic permutation of the indices21 3. A contains three classes df plaquettes
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Figure 1. Orientable surfac& of genusg = N/4+1
containing all sites and bonds of the 3D cubic lattice
Some examples of the even (E), odd (O) and exceptional
(R) cycles are also shown.

F;(g), orthogonal to the axes (i =1, 2, 3).

The parity of a site is given by(g) = (=1)"+*"2*"2, A is a bipartite lattice in that edges
always connect vertices of opposite parity.

In order to implement the dimer method we construct an orientable suffagihout
boundary, which contains all the sites and bonda aind is the union of a subset of square
plaguettes ofA. The numberN, of such plaquettes i%’; = N,/2 = 3N/2, each bond
belonging to two plaquettes of the surface and each plaquette containing four bonds. It follows
that N and at least one of the numbe¥s, N, N3 need to be even. For simplicity we shall
assumeaV; = 2M;, so thatN = 8M with M = M{M>Ms.

As we shall see, all the above conditions can be matched by a definitianvafich
preserves part of the symmetries of the original lattice.

The topological genug of the surface, evaluated by Euler's formulaMs— N, + Ny =
2(1 — g), from which it followsg =1 +2M =1+ N /4.

The definition ofE requires that a plaquettg, (¢) belongs taz only if n;, +n,, is odd, and
we shall call such plaquettésces The final result forx consists of a square-beam periodic
structure as shown in figure 1.

3.1. Combinatorial topology of the 3D cubic lattice

In order to proceed in the generalization of the Pfaffian method it is useful to recall some basic
notions of combinatorial topology [20].

Sites, bonds and faces Bfgenerate Abelian groups, additive modulo 2, of non-oriented
chainsC; (2, Z,) of dimensionk = 0, 1, 2, respectively. For any € Cy(Z, Z,), we have
¢ +c¢ = 0, where 0 is the identity of the group.

The linear boundary operatérmaps chains of different dimensiods Cy (X, Z,) —
Cv_1(X2, Z,) and is defined as follows:

Vg =1
8Li(q) = V(g) + V(Diq) )
5le(51) = le(q) + Lis(Di2Q) + Liz(Di3q) + ng(f])

Clearly,52 = 0. A chainc, in the kernel of, i.e. such thasc; = 0, is said to be closed. A
circuit is a closed sequence of vertices connected by edges, where each edge is an element of
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C1(Z, Z,), the sum of edges of a circuit is a closed 1-chain

A chainci_1 = 8c; € Ci (2, Z,) is called aboundary Sinces? = 0, a boundary: is
necessarily closed and reduces to a sum of circuits.

We will also keep the definition ofF; (¢) as given by (5) in the improper case in which
F;(g) is not a face, and hendd; (¢) is not a boundary but only a circuit dn.

Boundaries and closed chains 6}.(XZ, Z,) generate the subgroups. (X, Z,) C
7 (2, Z,) C Ci (2, Z,), respectively.

The homology group is thus defined By (X, Z,) = Zi (2, Z,)/ By (2, Z,) so that there
exists a projectiorr from closed chains to the elementsiéf, = : Z1(X, Z,) — Hi(Z, Z,).
Boundaries are topologically trivial since they are mappedrbgnto the identity O of
the homology groups. The elements Bf(X, Z,) are called cycles and the homology
group is generated by a base of lementary cycles which are equivalence classes of
closed chains under the addition of boundaries. A closed chain Z,(Z, Z.) such that
e = v € Hi (2, Z,), is called a representative of.

The multiplicative functionals on the elements@f(x, Z,) and H,. (X, Z,) with values
+1 constitute groups of cochains and cocycles denotedchyz, Z,) and H*(Z, Z.,),
respectively. The definitions oH, (X, Z,) and H*(X, Z,) are independent from the
triangulation of the surfac& and, in particular, will be valid for the decorated lattiEe
defined in the following section. The properties of the gro&Rsx, Z,) and HX(Z, Z,)
depend only on the topological featuresiofind not on the choice of the tessellating lattice.

The symmetry properties &f can be seen more clearly by considering its embedding into
the subset or bog of R? defined by 0< x < N1, 0 < y < No, 0 < z < N3 with periodic
boundary conditions. The complemestX is the union of two open and disjoint subsets
E+, &_ congruent under the translatioh= D1 D, D3 and invariant undef; = Dl?. S and
{T;} generate the symmetry groupBfwhile D; alone is not a symmetry ai. The closure of
B+, B_isgivenbyE* = E,UX, E- = E_UX andE*N E~ = . We may conventionally
regard2" as the interior ol2. OnE™, the bondL; (¢) is convex/concave depending on whether
n;(q) is odd/even, hence, moving alof®j with D;, we encounter alternatively convex and
concave bonds. OR*, each face has two concave and two convex bonds which interchange
if we focus onZ~ rather tharg*.

4. Kasteleyn's orientation and gauge symmetry

4.1. Decorated counting lattice

In order to write the Ising partition function as a dimer-covering generating function we first
construct a decoration of X obtained, following Fisher’s prescription [8], by replacing each
site of coordinatiorny with a graph of 833 — 2) points andy — 2 triangular faces, as shown
in figure 2 (for the case of interest here= 6). In our case, the decorated surfateontains
12N vertices.

Each face of maps into a face of" composed of four bonds inherited from plus
eight bonds introduced by the decoration. Each sit&® afriginates four triangular faces in
I, see figure Adf). As we shall see, the above decoration is also equivalent (with respect to
dimer-covering configurations) to a locally non-planar one in which each siie yélds a
complete graph of six vertices, see figure)2(

Clearly, the homology groups &f andX coincide and will be identified.
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Figure 2. Oriented decorating clusters. Each s#gi¢ replaced by either Fisher’s planar decoration
(b) or the equivalent complete grapt).(

4.2. Proper orientations

The orientation over bonds is an additional geometrical structudefined by a function
¢i(q) =%1,j =-3,-2,-1,1,2, 3, such thap;(¢q) = 1 (resp.—1) corresponds to a bond
oriented fromV (¢) to V(D;q) (resp. fromV (D;q) to V(g)), and¢_;(g) = —Djflqu (q).

An orientation of the bonds df or X is said to beproper if it satisfies the condition of
Kasteleyn's theorem for planar lattices, i.e. if by moving anticlockwise along the perimeter of a
face we encounter an odd number of oppositely oriented bonds. Unless otherwise specified we
assume in the following that all orientatiodsare proper. Consider now a boundaryloor
% consisting of a single circuit and containikgoints in the interior. By induction it follows
that moving along it anticlockwise we encounter a number of oppositely oriented bonds with
parity opposite to that of. A proper orientation ol defines a proper one far as follows.

Bonds ofT" inherited fromX are given the samg;(¢). Bonds forming the boundary of an
ornating triangle are then all clockwise oriented so they appear anticlockwise in the adjacent
faces ofl" inherited fromX and lead to a proper orientation. Sites3fand corresponding
decorating clusters df fall into two subsets of even and odd sites according to their parity

p(q).

4.3. Gauge group

Given a proper orientatio® of T, it is possible to derive different but equivalent ones by
reversing all the bonds df which are incident to a given sité(q), according to the local
gaugeoperation (see figure 3)

8(q) :¢j(q@) = —¢(q) vj. (6)

The operation$g(¢)} generate thgaugegroupG. The orientations generated Byare
equivalent and will be identified. By usirgwe can fix arrows ol such that they relate even
and odd clusters by a mirror reflection and reversal of orientations of all the bonds.
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Figure 3. Elementarygaugeoperation. The orientation parity of the faces remains unaltered.

4.4. Generalized Kasteleyn rule for dimer coverings

A dimer covering ofT" is defined by a two-colouring (say black or white) assignment to the
edges ofl” such that each site df belongs exactly to one black bond. By superposing two
dimer coverings we obtain a set of closed black circuits which cover all verticEs @&y
moving around a circuit we encounter an alternating sequence of black bonds from each of
the two coverings, therefore the length of the circuit must be even. If the circuit is a boundary
it must enclose points which are themselves connected by bonds forming black circuits, thus
the number of points inside must also be even and by moving around the circuit in whatever
direction we encounter an odd number of opposite arrows.

Dimer configurations are in one-to-one correspondence with terms of the Pfaffian of
an antisymmetric incidence matridd (®, X) which will be uniquely defined further on by
the pair(I, ®). In what follows we shall use one-chains composed of black circuits only,
originating from the superposition of dimer coverings. For simplicity, since no confusion will
arise, we use for the black subgroups and the corresponding dual groups the same notation
Bi1(2, Z,), Z1(2, Z,) andH.(Z, Z,) = Z1(2, Z,)/B1(Z, Z,) introduced in the previous
section for the full groups.

Adding a boundary to a black circuitdoes not alter its orientation. The latter depends,
therefore, only on the image = n(c) € Hi(X, Z,) and defines a functiond(c). From the
bond orientation functiog; (¢) we define the orientation functiob;, (¢) for the boundary of
the faces F;, (¢) as the multiplicative and gauge-invariant functional

D, (q) = —0i,(q) i3 (Di,q)—i,(Di, Digq)—i5(Diyq). (7
For a black boundary, Kasteleyn'’s rule implies
D;(g) =1 i=1,...,3 g=1...,N. (8)

Given an anticlockwise sequence of bords(q;) forming the circuitc; € C1(%, Z,)
and connecting the pointg(g;), j = 1,...,m, the orientation®(c1) over Hi(X, Z,) is
defined by

@ (c1) = —I1_16x;(q;)- 9)

On alattice of non-trivial genyg(g > 0) suchafunctionalis notan elemenidt(Z, Z.,),
i.e. in generakb(c1 + c2) # ®(c1)P(c2), as it can be readily verified in the simple 2D Ising
lattice with periodic boundary conditions but also on other finite lattices [13]. The argument
runs as follows.

The single black circuit » given by the sune; + ¢, of two black circuitsc; andc, of
parity ®(c1) and®(cp) respectively, which intersegttimes, has parity

D(c12) = (=D P(c)P(c2). (10)
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Figure 4. 3D simple cubic lattice and the axial gauge t#ee

This fact will turn out to be essential in determining the signs with which the Pfaffians have
to appear in the expansion of the generating function. Let us consider the specific example of
the sum of two black circuits; andc, of parity ®(c1) and®(c,) with representatives + ¢
for c1, b + ¢ for ¢, wheret is a common bond and b are paths closed b§ A representative
for the product; is nowa + b.

We move along; in a specific direction encountering opposite arrows along and
r = 0, 1 opposite arrow coming from with a total ofn, + r. Similarly, we proceed along
¢ in such a way that when we move aloeg, a andb run in the same direction and meet a
numberm, + 1 — r of opposite arrows sinc&is run in the opposite direction ity with respect
to ¢;. The total number of opposite arrows alang is nown, + n;, while the total orr, ¢

isn, +n, + 1. This result is equivalent to (10) far = 1 and can be generalized to multiple

intersections.

4.5. Gauge tree, spin structures and Pfaffian matrices

The gauge symmetrg can be used to fix the orientation on a subset of bonds forming a
spanning tre€ in I, see figure 4. It will be seen that both the gauge choice and Kasteleyn's
rules lead to a number of orientations which #.2Such orientations break all symmetries of
¥ and are in one-to-one correspondence with tespin structures of a surface of genus

For each element of the basef(Z, Z,) there exist two possible orientations, for a total
of 2% different global orientations of. Given® for the cycles of the homology base, it is
possible to derive the parity of any circuit by the intersection formalism related to (10).
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& defines (modulo gauge transformations) an antisymmetric mat#xp, X) of
dimension 1/ x 12N with elements labelled by the sitesIof Changing the gauge produces
a new matrixM’(®, X) = KM(®, X)K 1, with K diagonal, which has the same Pfaffian of
M(D).

If ¢, g’ are not connected we s&f, , (P, X) = 0. If ¢, ¢’ are connected by a decorating
bondL;(q), we haveM, ,(®, X) = ¢;(¢) = +1 depending on the orientation of the bond. If
q, q’ are connected by a bond inherited fremwe setM, , (P, X) = ¢;(¢)X = X, where
X is the so-called activity of the bond, = tanh(8J), whereg is the inverse temperature and
J the spininteraction energy. The diagonaklP2 blocks ofM (®, X) describe the decorating
clusters displayed in figure B(and are given by

o o o o o0 1 -1 0 O 0 o0 o0
o o o 1 o0 0 0 -1 0 O o0 o
o o o o0 1 0o O O0-1 0 0 O
o -1 0 0 0o O O 1 0 O O0 o
o 0o -1 0 0 O O O 1 0o o0 O
-1 0 0 0 O o0 1 o0 o0 o0 o0 o (11)
1 0o o O 0 -1 o O O 1 o0 o
o 12 0o -1 0 0 O O O O 1 O
o o 1 0 -1 0 O O O O o0 1
o o o o o o0 -1 0o 0 0 1 -1
o o o o o0 o o0 -1 0 -1 o0 1
o o o o o o o o0-1 1 -1 o0

We have thus defined all the elementsWwf®, X) which can be written as
M(®, X)=A+ XB(P) (12)

whereA is block diagonal consisting @f /2 fixed blocks as in (11), corresponding to even sites
andN /2 opposite blocks corresponding to odd sitBs®) containsp; (¢). For computational
purposes the matrix (®, X) can be replaced by an equivalent one of dimensiong ¥2.2M

by a folding procedure which we can sketch as follows. In this sedjjalenotes the identity
matrix of ranks.

(i) The 12N sites are grouped into two subsets each @fétes. The first subset, Ext,
includes the internal sites of each of tNedecorating clusters, which in (11) label rows and
columns 6. .., 12. Each of these rows and columns have three non-zero entries. The second
subset Int contains sites with two decorating bonds (the two non-zero entries in (11)) and one
inherited fromX which appears irB. SchematicallyM (®, X) can be written in blocka/;,
of the form
My My
Mz My

wherei, k = 1, 2 label the subsets Ext, Int respectively. But ndfy; is a block diagonal
matrix with DetM17) = 1 and which can be easily inverted. We then write
det(M) = det(M11) det(Mz; — MorMy; M1o) = det(M,). (14)

M, = My — M21M1‘11M12 is now a GV x 6N matrix where the decoration now reduces
to complete graphs of order 6 shown in figure)2(

(i) The 6N Ext entries inM,, are again partitioned into two subsets labelling even and
odd sites respectively, thus exploiting the fact thails a bipartite graph. Schematically,
can be written as

M@, X) = (13)

Mgg MEgo
M, - 15
Mor Moo (15)
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Now Mgg, Moo do not containX since an inherited bond always connects sites of opposite
parity, while Mgo, Mog are instead linear irk. We may again apply (14) and obtain a
3N x 3N matrix of the form

M,(®, X?) = Ay + X?By,(P) (16)
such that detV,,) = det(M,,).

It can be verified that the diagonal matfix= Iy ® Diag(1, 1, 1, —1, —1, —1) obeys the

relations

QAQ = At QB.Q=B,* (17)

and thatA,, B, share the same spectrum with eigenvaldés +i(2 — +/3), +i(2 + +/3)
independently ofb and detd, = det®2 = 1. The essential information is now contained in
B, and X sinceA; is a fixed numerical matrix.

By Cayley’s theorem the determinant&f(®, X) or M, (P, X?) is the square of an even
polynomial P f (®, X) in the activity X called the Pfaffian oM (®, X).

As we shall see, the ambiguity of sign in the extraction of the square root can be solved
by imposing all Pfaffians to be- 1 in the high-temperature limX — 0. However, the
polynomial P f(®, X) may have zeros on the real axis in the physical range 0, 1 and may
change sign when reaching = 1. By generalizing the results of [13] we find that the sign
in X = 1is given by the functiow (a) defined below in (43), having a precise topological
meaning.

(i) We have:
detM, (®, X?) = det(A, + X?B,) = det(Iay + XA, 'B,) = det(Izy + X2U,) (18)
whereU, = A;'B,,.

Let ® = QA,;, so that®? = I3y and

OU,0 = ©A,;'B,0 = QB,QA, = B, *A, = U, * (19)
where® is once again a block & 6 matrix which can be explicitly diagonalized so that
by changing basis bot® and U can be written in the following block form where briefly
I = Iy = Iay)2:

_|r o o R
o=l O w-]2 ¥ @)
From (19) we see thad, R, S, T satisfy the identities
0°—RS=1 Q=RTR? Q= S71Ts. (21)

We have now

det(I + X°U,) = det

I+X%0 X?R
XS  I+X°T
I o||r+x290 X2RS I 0
= det(‘ 0 s ’ X2 1+x2sirs||o st (22)
but now S can be included in the changes of basis and we can asSumel, T = Q,
R = Q? — I. Therefore, we may simply write

20\ I+X%20 X%0Q?-1| _ 0 —(X*+1DI-2X2%0
det(T + X*U,) = det| " "\, r+x2¢ | =9t I+X20
= det(X* + 1)I +2X°0) = X** det((X? + X 2)I +20) (23)

where we subtracted from the upper block row the lower block row multiplie@byX —2.

In the last form the determinant is evaluated for a matig + 1)I + 2X2Q of rank 12V,

a factor 8 down fromM (&, X), with a considerable gain in computational speed. Clearly,
Pf(®, X)X M jsinvariant under the mag — X 1.
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5. Cycles and cocycles ovex

The black elements ofH1(Z, Z,) are generated by two classes of elementary cycles
Ei, (g), Oi,(q), referred to as even or odd cycles forming the g&{®). Such cycles are
homologically equivalent ovdr to cycles of the form

Li, + Liy(Di,q) + Liy(Diyq) + Liy(q) (24)

wheren;,, n;, are even/odd for cycles E/O.

Cyclese {E, O} are thus generated by the boundaidé%(q) of the 124 = 3N/2
plaguettes of” which are not faces ot (see figure 1).

However, these cycles are not independent since their numbgf is @(1 + 2M) = 2g.
In order to perform a correct counting we consider the following product of six plaquettes for
ny + 1, ny, nz even (remember thagt= (n1, nz, n3)):

E1(D1g) + E1(q) + §F2(q) + 8 F2(D2q) + 8 F3(q) + 8 F3(D3q) (25)

i.e. the boundaries of the plaquettes of the elementary €i{pg obtained by translating of

the siteV(¢) by one unit along the positive direction of all three axes. By expanding the
product (25) each bond appears twice, whence follows the equivalence modulo a boundary of
E1(D1q) and E1(g), which are identified inE. Indeed the parity of the last four plaguettes
indicates that they must be faces®fand are topologically trivial. Both iF3(n1, ny, n3),

F3(nq, np, n3 + 1) the sumny + ny is odd, while inFs(nyq, ny, n3), Fo(ny, ny + 1, n3) the sum

ny +ngis odd. It follows that they have boundaries equivalent to the identit{f,@¢k, Z.,)

and that

E;(D:iq) = Ei(q) n; odd
0:(D;q) = 0;(q) n; even
Each cube ofA gives an identity among cycles, but their actual role depends on the parity
of ni, np, n3.
If n1, no, ns all have the same parity, the boundary of the cube does not contain faces and
leads to the identity

(26)

3
> (Ei(q) + Ei(Diq)) =0 (27)
i=1
which connects six cycles of the same parity and must be added to the previous identities. We
shall denote witte and O the set of values of restricted tans, n,, n3 all even and all odd,
respectively. Ifg € &, the cubesC(q) andC(T;q) are continuous and contain the common
cycle E;(D;q) = E1(T;q). It follows that theM identities deriving from the even cubes are
not independent because in their sum each cycle appears twice. The same reasoning applies
to the odd cubes. Thus we may write
Y E(@)=0 ) 0i(q)=0. (28)
qe€ qe0
Another class of identities connects even with odd cycles. Consider the planevibii
nz constant. Such a plane is tessellated by plaquettes which are fages if, is odd and
otherwise have boundaries (anbut not on) which are cycles E3(g) or O3(g). By virtue
of the periodicity ofA the plane has toroidal topology and the sum of the boundaries of all the
plaguettes is 0. We thus have the identities

e(ns) = Y Es(ningna) =ons)= Y  Os(ni,ny ns). (29)
ni,npeven n1,npodd

Replacing:z with n3 — 1 in the above expressions we obtain the same identity due to (26).
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Such aresult can be further extended as follows; I§ even, we have(nz) = e(n3—1).
Let us consider the product of the boundaries of the cubes, ny, n3) wherengs is a fixed
even index and, n, are even

Z [E;i(ny, n2, n3) + E;(D;(n1, n2, n3))]. (30)

ni,npeveni=1,23

Factors of the typeE1(n1, ny, n3), E2(n1, na, n3) always appear twice in contiguous cubes,
and the products can be written as

Y [Es(n1. na, n3) + Ea(ny, n2, ns + 1] = e(na)e(ns + 1) (31)

ni,nz€ven

from which we havee(nz) = e(nz + 1). It follows thate(nz) does not depend oms. The
same result holds for all directions and for cycles of odd arguments. Form (29) we have
e(n;) = o(n;) = I;, providing three exceptional identitidsi = 1, ..., 3), which connect
cycles of different parity.

Finally, we have three exceptional cyclRgq)(i = 1, ..., 3) given by

Rg)= Y. LiDg. (32)

n=0,1,...,Ni—1

We setR; = R;(0). EachR;(g) can be expressed in terms Bf and of E, O cycles. Note
that R; (¢) does not depend oty and hence can be written in terms of two site labels and a
direction, e.g.R1(q) = Ri(n», n3). Geometrically,R1(g) is a straight circuit which winds
aroundA by exploiting the periodicity, its length i%; = 2M; and is even (see figure 1).
There is no ambiguity in extending formula (9) to blaRkq). The existence aR; (¢) follows
from the periodicity conditions imposed ok and also exists in the 2D Ising model where
they produce the analogue Bf(g) fori = 1, 2. There is, however, no 2D analogue of #ig

O cycles.

We are now in position to check that the overall number of independent cycles is in fact
2g. To each one of théf even/odd cubes corresponds one identity but anly 1 of them are
independent. TheM even/odd cycles we started with reduced3 (M —1) =2M+1=g
independent ones, giving an exact overall numbegofthe three cycles that are eliminated by
the identitiesl; are replaced by the exceptional cycRsso that the overall counting remains
unaltered. (In the thermodynamic liniit — oo, we expect a negligible contribution from the
surface terms;.)

We can restate the counting problem by noticing that the total number of defined cycles
amounts to 37 + 3M + 3 = 6M + 3 = 3g. However, the total number of identities is given by
2(M — 1) + 3 = g and hence the number of independent cycles is once nidre 2= 2g as
expected.

The generalized dimer method amounts to writing the partition function as a suffi of 2
G-invariant Pfaffians associated to all possible different orientatians

We callfundamentabrientation® - that for which®(a) = 1 foralla e H1(X, Z,). This
can be obtained by setting

¢i(ny,nz,nz) = (=1)". (33)
While the fundamental orientation makes no distinction among plaquettes, the
antifundamentakb 4, requires®;(¢) = —1 for all E, O cycles but®(R;) = 1. There is

no simple recipe fob 4, analogous to (33) since the way it appears depends on the spanning
tree7.
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6. Topological intersections and sign functionals

6.1. Intersection of cycles

The bilinear symmetric functiondla, b] over the cycles:, b is given by Mod p, 2) wherep

is the number of intersections af b overX. In our case a detailed analysis shows that cycles

€ E, O of the same parity or the same normal do not intersect. The general formula can be
deduced from

I[E1(m1, m2, m3), O2(n1, n2, n3)] = 8y my—16my,ny—16ng ma+1 (34)

by imposing invariance under cyclic permutation of the axes and undef, thesymmetry
operations. Two adjacent cycles do not intersect.
The cyclesR; do not obey this rule and the intersections with the exceptional cycles are
given by
I[Re, Ei(9)] =0 it iFk
I[Ry, 0i(@)] =0 it i#k
I[R].? Ei (n].? n27 n3)] = 5i,1(8n2,05n3,0 + 8}12,1\/2718"3,/\’371) (35)
I[R1, Ei(n1, n2, n3)] = 8; 2(85,,00n5,0 + 8y, Ny—16n5, Ng—1)
I[Ry, Ei(n1, n2, n3)] = 8;3(85,,00n,.0 * 8ny, N1—10n5,N,—1)
together with the expressions obtained by interchangingth O.

The definition of/[a, b] can be extended by linearity mod 2 to arbitrary pairs of cycles
a, b.

6.2. Topological excitation and signature

The intersection formalism leads naturally to the notion of elementary topological excitations
{r;(¢)}, a set of minimal operators which locally change a proper orientation into a new
one, still proper but inequivalentr only acts on the inherited bonds and we can define
directly overX. Any two inequivalent proper orientations are connected by a sequence of
operations and hende;(¢)} generate all orientations &f. In particular, we may reach any
orientation by repeatedly applyingg) to ®q. Inthe following we use the equivalent notations
®;(n1,nz,n3) = ®;(q) = d®(a), wherea = E;(q) or O;(q). The elementary topological
excitations are in one-to-one correspondence withith@ cycles and we may adopt the same
set of indices and distinguish between even or odd excitatio@, — £ (¢), 7. (q).

The action oftf (n1, np, n3) = tf (n1 — 1, ny, n3) is given by

¢l(nl_ 17 n2+6an3+§) - _¢l(nl_1s n2+€» n3+$) 615 = O» 1 (36)

The definition extends in an obvious way to the other directions and, in virtue of the invariance

under theS, T; operations, (36) also holds for odd operators. Clearly, the valugentbonds

not appearing in (36) are unaffected tf(q).

Given an elementary cycle, e.Hi(g), there exist four other intersecting cycles, e.qg.
02(D;*D2D3'q)  02(D;'D2Dsq)
03(Dy*D;'D3g)  O3(D;y*DaD3g).

Consider now the orientatich,(n; — 1, np + 1, n3 — 1) corresponding t@,(n, — 1, np +

1,n3—1) = 02(D;*D2D3'g),

Gy(ny—Lnp+1,n3—1) =¢i(n1 — Lna+ 1 n3 — Depa(ny, n2+ 1, nz — 1)

X¢_1(n1, nz+1,n3)¢_3(n1 — 1, nz + 1, n3). (38)

37)
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The last factor changes sign under the actionrtg) and hence the orientation of
®,(np — 1,np + 1, n3 — 1) also changes and the same result holds for the other cycles of
example (37).

The action ofr,.E'O(q) changesb into an inequivalent orientation which differs frodn
only in the orientations of the local cycles intersectifidq), O;(¢q). The orientation of all
faces of X remain unchanged undef’o(q) so that the Kasteleyn conditions are always
fulfiled. Each cycle can be given an active role if identified w't;ﬁ’o(q) or a passive
one if considered as a cycle changing parity under the actiorféf(q). The functional
T, € H\(Z, Z,) : Hi\(%, Z,) — Z, is defined by

Z,(b) = (-1/*¥g b e Hi(Z, Z,). (39)

6.3. Axial gauge

We fix the gauge for the orientations of bond by selecting a subgét-efl bonds forming a
spanning tred of A, that contains all the sites @f. A convenient gauge fixing is the axial
gauge (as displayed in figure 4):

¢3(0,0,I’l3):1 n3:0,1,...,N3—2

¢2(0’n2’n3)=(_1)”3 n2=0’17'-'5N2_2 n3=0715'~'3N3_1

¢1(n1, na, ng) = (1™ ni=0,1,...,N -2

n2=0,1,...,N2—1 n3=0,l,...,N3.

The axial gauge leaves undetermined the orientation&yef @V —1) = 2N+1 = 16M +1
bonds not belonging t@. However, the 12/ — 1 Kasteleyn conditions reduce the number of
such independent orientations toM6- 1 — 12M + 1 = 4M + 2 = 2g, as expected.

From the recursive relation equivalent to (10)

®(a+b) = ¢(a)P(b) (-1 (41)
we deduce then the value®fon all the elements dff; (2, Z.,) starting from®; (¢). From (10)

we see thatb; (¢) is invariant undety and the same is therefore true for @l{a). The set of
all the @, (¢) determines therefore the global orientatibrimodg) of X.

(40)

7. General procedure and Pfaffian expansion oveE

The geometrical structure on which we define Pfaffians admits an alternative equivalent
definition. We consider two cubic latticesg, A, each havingM vertices in one-to-one
correspondence with even/odd culdga, n,, n3) wheren; +n,+n3 = even/odd, respectively.

The bonds of the lattices correspond to the evenlBd@ cycles.

In place of spins we have the orientation parity of the O cycles, satisfying the
identities (26)—(29). Topology plays a marginal role in the classical 2D Ising lattice where the
genusg = 1 leads to a sum over four Pfaffians only.

Here the reduction of the original sum éh= 4(g — 1) spins to one on 2 functionals
does not solve the problem but reduces the complexity of the task. The orientations on the
sublatticesA g, Ao are not independent.

We now sketch the general algorithm which fixes all gauges and gives all bond orientations
¢;(g) in terms of a subset ofRindependeny’ by means of the Kasteleyn conditions. We
consider anly the homogeneous case where the activities of bonds are the same in all directions,
however, the results can be straightforwardly generalized to any non-homogeneous distribution
of bond interaction energies.

The actual steps are quite complex and can be summarized as follows:
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(1) Compile a list of all vV ¢, (¢) considered as independent binary variables.

(2) Impose the axial gauge (40) and obtain a sublist™df21 termse; (q) only.

(3) Impose the Kasteleyn conditions over faces. This can be achieved by solving iteratively (8)
thus reducing the number of independénly) to 2¢ = 2 + N/2 forming a basig3 for
the 2¢ functionals inH(X, Z,). FromB we define by group multiplication the generic
functional®(a) € HY(, Z,),Va € H1(Z, Z,).

(4) Select a complete bas® = {wi,k = 1,...,2¢} of independent cycles out of
E, O, Ry, Ry, R3. A generic cycle can then be written as

2g
a=Y_ e ex =0, 1. (42)
k=1

(5) Define the self-intersection functidh (X, Z,) — Z», see (34), (35), (41)
O’(a) — (_1)Zfi2 Z:/;lll[wk,wk/]ekek/. (43)

(6) The functiortz, in (39) defines an invertible duality map (=, Z,) — HY(X, Z,). The
mapo o I;l lifts the self intersection ta7'(X, Z,). In any case we do not need to
compute explicitly the inverse df,.

(7) Givena asin (42), we computg, and expand itin terms of the restricted batefined in
step 3, thus determining the orientatiahé&a), ¢; (¢) and all matrix elements aff (o (a))
explicitly as functions oty .. ., ep,.

(8) The dimer generating functiady(X) is then given by the sum over Pfaffians

1
Zo(X) = 5; D o(@Pf(®(a), X)

aeHl
1 2 YR oo levey &

= > (—pZemziallveda pr( o 3 ey ), X ). (44)
" {ex=0,1} k=1

As in equation (4), the Ising partition function is simply given by
Z = (2coship)))* Zo(X) (45)

whereJ is the spin—spin interaction energy akid= tanh(8J) is the activity of a bond at
inverse temperaturg.

(9) For non-bipartite lattices such as the decorated spin lattices there is no direct and fast
numerical method to compute Pfaffians with their proper sign. This is possible in other
cases, for example in dimer coverings of bipartite lattices where the mdifi(a))
is block diagonal. In spin lattices we first compute the determina pextract the
positive root and seP f (®, 0) positive. The sign ak = 1 is then directly given by (a)
or obtained by analytic continuation of the Pfaffian which is a polynomial of degkee 3
in X. Thuso (a) could be used to predict the parity of the number of real zeros of the
Pfaffian in the interval 0< X < 1.

8. Preliminary analysis of Pfaffians

This section is very preliminary and deals with a number of properties and conjectures which
will need to be discussed in detail in a separate study [27]. However, we anticipate some
simple results which are essential in analysing the behaviour of the Pfaffian expansion.

Some of these properties have been verified on finite Ising lattices and are in agreement
with extensive numerical sampling and numerical findings [21]. We should mention that the
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procedure has not yet been optimized for a numerical approach. In particular, the classification
of Pfaffian symmetries has still to be implemented.

The self-intersection functios (a) can be defined on any triangulated surface of genus
g and particular examples of gengs = 0 to 3 have been worked out in detail in the
literature [4, 13]. The argument takes 2¢ values parametrized byg2binary variables
e1,...,ez. Itis always possible to redefine the basisHa(%, Z,) in such a way as to
haves (a) = (—1)Xiacin = [15, (=144, The factor(—1)““+ takes a value of 1 three
times and a value of 1 once ag;, ¢;+, run on Q 1 and all the factors appearingdra) are
independent. Suppose now thét(g), N_(g) are the number of times(a) takes the values
1, —1 respectively, so tha¥. (1) = 3 andN_(1) = 1. We have the recursion relation

Ni(g+1) = 3N.(g) + N_(g) N_(g+1) = N:+(g) +3N_(g) (46)
which has the solution
Ni(g) = 267128 +1) N_(g) = 2¢71(28 — 1). (47)

N.(g) andN_(g) give the total number of positive and negativg:) in expansion (44). This
statistics is important in evaluating the convergence properties of the expansion. Fgr high
this means that if we pair-off positive and negatiug) we are left with a small excess of 2
positive values, i.e. one part if 2SinceP f(®, 0) = 1 we haveZ,(0) = 1 as expected at
T = oco. As X increases all terms in (44) eventually become positive and eqiaf (@ £, 1).
Comparing the total sum?2P f(®r, 1) with the knownT — 0 limit for Z, we obtain
Pf(dp, 1) = 2™ The equality of the absolute valuesPff (®, 1) only holds on decorated
spin lattices whereas generic dimer lattices have a spectrum of values. Thefaotorduces
a cancellation with a cutoff factor2 in (44) intheT — oo or X — 0 limit which does not
occur atT — 0 and leads to a steeper log derivative #£3(X) as compared with that of the
single Pfaffians.

As first noted by Kramers and Wannier [19], planar spin lattices can be characterized by
duality relations. However, fog > 0 duality does not directly relate the partition function
of a lattice to that of the dual, but rather acts very simply on the single terms in expansion
(44) by only changing their signs so that they are still positive infthe> oo limit. Since
duality swapsl” — oo andT — 0 limits we see that in dual lattices positivity is required at
opposite ends of the interval© X < 1. Inthe 2D Ising lattice the sign reversal does not alter
the partition function in the thermodynamical limit but the same need not to be true in three
dimensions. In any case the 3D lattice is not self-dual.

A lower boundX for the zeros ofP f (®, X) can be derived from (16). From the spectrum
of A;, Byweget|As| < 2++/3,|Bf| < 2++/3, whenceXo > ﬁé =2-4/3~0267....
Numerical analysis indicates that in fact Pfaffians vanish in the r&inge- 0.3178. .. which
is actually reached by f(®r, X) to X, = 0.3506... reached byPf(®,4, X). These
values can be computed exactly as roots of an algebraic equation because the translational
symmetry of these Pfaffians leads to explicit formulae. Random sampling of orientdtions
up toN; = N, = N3 = 8 indicate that zeros tend to accumulate arous3d Osee figure 5.

Therefore, we now divide the interval© X < 1 into 4 regions:

(i) The very low temperature regiaki > X, where all terms in expansion (44) & are
positive and the series converges rapidly and agrees wittl@xpansions.
(i) The crossover region centredXit= 0.34, whereN_(g) = 2¢~%(2¢ — 1) Pfaffians change
sign.
(iii) The region between the estimated critical temperafure X ~ 0.218 09452) [22] and
X, In this region the negative terms have absolute values smaller that the positive terms
and we expect that convergence degrades rapidly as we move t&gard



758

T Regge and R Zecchina

n n n n 1 n n n n
0 X, X, X, 05 1
Re(X)

Figure 5. Overlap of the complex zeros of 50 Pfaffians corresponding to different randomly chosen
orientations /1 = N» = N3 = 8). X andX,, (computed in theV — oo limit) are the upper

ond lower bounds for the zeros given by the singularities of the fundamental and antifundamental
Pfaffians, respectivelyX( corresponds to the value of the critical temperature estimated by different
analytical and numerical methods.

(iv) The high-temperature regio < X, where all absolute values of the terms in (44)

become comparable and the valueZgfis determined by 2unpaired Pfaffians. For small

X all absolute values of the Pfaffians are close to 1 and the sum (44) over a sample of
random terms has a noise of the order ofZ L while we expect a signal of the order of
272 [, normalized to 1 ak = 0 for the complete sum. In order to get a signal we need

a signal/noise rati% ~ 1, i.e.L ~ 2%, This means that unless one sums over all
terms we only get noise and that numerical computation is ruled out unless one obtains an
explicitly summable formula for the Pfaffians as happens in the imit co. Therefore,

exact matching with know — oo results is still possible and useful. Asincreases

the absolute values of the positive terms grows, on average, more rapidly than that of
the negative ones thus improving the signal/noise ratio. We conjecture that the critical
X = X, is effectively a threshold beyond which the signal becomes effective. In general,
for a fixedX and all® we haveP f(®4, X) < Pf(®, X) < Pf(Pr, X).

Further details and high/low temperature expansion will be discussed in a forthcoming

paper [27].



Combinatorial and topological approach to the 3D Ising model 759
9. Dimer statistics

A simple application of the above formalism is the evaluation of the number of perfect
matchings, i.e. dimer coverings, over the 3D cubic latfice
As for the Ising model, it can be solved exactly or treated easily in the case of planar
lattices, whereas it still represents an open problem in the case of non-planar graphs [23].
The dimer-covering generating function is given by a Pfaffian expansion similar to (44)
whereM (®) is now aN x N matrix of elements, , () = ¢;(¢) = £1 depending on the
orientation of the bond. The decorating bonds are absent whereas the orierbatiofgplay
exactly the same role as in the Ising case. Following the same steps discussed for the Ising
case and separating odd and even sites, we arrive to a block diagonal fofgdof

M(®) = (—C?CD)T C(ch)) . (48)

We now have directhP f(M (®)) = Det(C(®)), and the expansion reads

1 1 2g k—1 o
Zoimers= 57 ) 0(@Pf(®(@) = oo ) (~DHizRenloeedadDeyC (@)

2¢

acH {ex=0,1}
2g
b = Cb( Z ekwk> .
k=1

Such a formula can be used both for exhaustive enumerations of cove(iMgsV,, N3)
of finite lattices of linear siz&/; x N, x N3 as well as in a probabilistic framework [27].

We have applied (49) to the case of finite cubic lattices with open boundaries in order to
recover and improve the known results. The limitations in the size arise from the number of
terms appearing in the expansion which increase exponentially with the genus of the surface,
which for open boundaries grows as= MyMy(M3 — 1) + MoM3(My — 1) + M3sM1(M, —

1) — MiM,M3+ 1 (g = 2L% — 3L? + 1 in the isotropic case of linear siZzg. We have found
h(4,4,4) = 5051532105 (in agreement with [25)(6, 4, 4) = 932814 464 901 633 and
h(6,6,4) = 123115692 449982 216049513.

Note that the rigorous lower bound [24] on the number of dimer coverings in three
dimensions in thel — oo limit can be easily recovered in our approach by computing,
via Fourier transform, the periodic Pfaffian correspondingo[27].

Equation (49) can be also thought of as the expansion in terms of determinants of the
permanent of 0—1 matrices, &#omplete problem which can be easily mapped onto the
evaluation of dimer coverings over an associated bipartite lattice [26].

(49)

10. Conclusion

In this paper we propose a combinatorial/topological formalism for the study of the Ising
problem over lattices of arbitrarily high topological genus which generalizes the well known
approach of Kasteleyn. The partition function is written as a sum over Pfaffians with a
topological signature.

We apply the method to the 3D cubic Ising problem where we have reached a very
preliminary assessment on the expansion in the high- and low-temperature ranges. The same
formalism applies to the perfect matchings problem and provides a determinant expansion for
the permanent of 0—1 matrices.

Work is in progress on the physical and algorithmic relevance of the method.
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